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Abstract We demonstrate with field data the benefit of using high-time-resolution chemical speciation
data in achieving more robust source apportionment of fine particulate matter (PM2.5) using positive
matrix factorization (PMF). Hourly composition data were collected over a month in Shanghai, including four
inorganic ions, 13 elements, organic, and elemental carbon. PMF analysis of the hourly data set (PMF1h)
resolves eight factors: secondary nitrate/sulfate, vehicular/industrial emissions, coal combustion, secondary
sulfate, tire wear, Cr and Ni point source, residual oil combustion, and dust, with the first three being the
major ones and each contributing to >20% of PM2.5 mass. To characterize the benefit gained from time
resolution, we carried out separate PMF analyses of 4- and 6-hr averaged data of the same data set (PMF6h
and PMF4h). PMF6h and PMF4h produce an eight-factor solution sharing similar factors to those by PMF1h but
show less stability and more mixing in source profiles. Profile mixing was especially noticeable for tire
wear, coal combustion, and Cr and Ni point source in PMF6h, as the 6-hr averaging significantly decreased
between-sample variability and increased rotational ambiguity. While the three sets of PMF solutions were
similar in contributions for factors with major species as source markers (e.g., secondary nitrate/sulfate),
larger variations existed for factors with trace species as markers due tomixing of major species in the profiles
and higher rotational uncertainties in PMF4h and PMF6h. Our results indicate that hourly time series of
elements andmajor components could achievemore robust source apportionment through better capturing
of diurnal-scale dynamics in source activities.

1. Introduction

Airborne fine particulate matter (PM2.5) has garnered considerable global attention due to its impact on cli-
mate change, visibility reduction, and human health (Nel, 2005; Ramanathan et al., 2001). Knowledge of emis-
sion sources and the contributions is essential to improve air quality. Positive matrix factorization (PMF;
Paatero & Tapper, 1994) is a widely used receptor model to apportion source contributions to PM2.5 level
at a receptor site. Traditional source apportionment studies often rely on filter-based daily or subdaily mea-
surements of elements and compounds. The integrated filter sampling has the advantage of analyzing more
species including elements and even trace organic species, which can provide additional aerosol chemical
composition and source information (Hu et al., 2010; Wang et al., 2017). However, the daily or subdaily time
resolution from these filter-based measurements loses the dynamic information of source activity at the diur-
nal time scale. In addition, due to the sample size requirement to achieve a robust PMF result, traditional
filter-based measurements often spanned one year or more (Qiao et al., 2016) or combined from multiple
sites (Huang et al., 2014). The long-time span data posed a potential risk of source profile changing during
the study periods (Canonaco et al., 2015), which violates the PMF assumptions.

Online quantification of individual elements or molecules in atmospheric PM with hourly time resolution has
been gradually achieved over the past decade (e.g., Phillips-Smith et al., 2017; ten Brink et al., 2007; Williams
et al., 2006). Such online instruments for PM2.5 components deployed in this work include the following:
Monitor for AeRosols and GAses (MARGA for measuring the inorganic aerosol components, including Cl�,
NO3

�, SO4
2�, NH4

+, Na+, K+, Ca2+, and Mg2+; Griffith et al., 2015; ten Brink et al., 2007), semicontinuous
OC/EC analyzer for carbonaceous materials (i.e., organic carbon and elemental carbon, OC and EC; Kim
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et al., 2006), and the recently commercially available Xact 625 Particulate Metals Monitor for elements
(Phillips-Smith et al., 2017).

The highly time-resolved measurements are intrinsically advantageous for source apportionment analysis, as
they are able to capture diurnal scale dynamic processes related to primary source activity (e.g., vehicular
emissions) and secondary aerosol formation. Such diurnal variations can be compared with rapid change
in meteorological conditions and gas pollutants, thereby serving as supportive evidence in the source iden-
tification. In addition, the high-time-resolution data provide the opportunity to do the source apportionment
for short periods (e.g., several weeks to months).

The availability and utility of the highly time-resolved trace element data are especially notable for source
apportionment, as a number of trace elements are effective indicators for a few common aerosol sources,
for example, Ca, Fe, and Mn for dust; Ni and V for residue oil combustion; and As and Se for coal combustion.
There are a very small number of source apportionment studies exploring the combined high-resolution
data set including trace element measurements (Gao et al., 2016; Peng et al., 2016; Richard et al., 2011;
Sofowote et al., 2014). Among them only Peng et al. (2016) paid attention to characterize the benefit
gained from time resolution in comparison with source apportionment relying on daily/subdaily time
series measurements.

A survey of the literature for past source apportionment studies in China indicates that up to now, source
apportionment using online data has been mainly based on the Aerodyne Aerosol Mass Spectrometer
(AMS) or Aerosol Chemical Speciation Monitor (ACSM) for PM1 (Li, Sun, et al., 2017). The AMS or ACSM pro-
vide data of ion fragments, which are less uniquely linked to aerosol sources than the molecular or elemen-
tal tracers, as the molecular information is partially lost in the process of forming fragment ions in AMS or
ACSM. Source apportionment studies based on online aerosol molecular/elemental composition data in
China are relatively scarce. Only a few studies are found in the literature, with most of them are conducted
in Jing-Jin-Ji region (Gao et al., 2016; Li, Chang, et al., 2017; Li, Ma, et al., 2017; Liu et al., 2017; Peng et al.,
2016; Tian et al., 2017), among which only Peng et al. (2016) and Gao et al. (2016) incorporated inorganic
ions, OC, EC, and elements. For the Yangtze River Delta (YRD) region, only one study was found (Wang
et al., 2016), in which principle component analysis of major inorganic ions alone were used for source
apportionment. Studies utilizing the full suite of online measurements, major components plus elements
have not been documented for the YRD region yet.

Shanghai is the financial center of the YRD region and has a population of more than 24 million over
6,340 km2. The city has experienced frequent PM2.5 pollution episodes in recent years, with the
concentration reaching as high as 200–800 μg/m3 (Feng et al., 2012; Li et al., 2014; Wang et al., 2015),
far exceeding the National Ambient Air Quality Standards of China (75 μg/m3 for 24-hr average, and
35 μg/m3 for annual average). In this work, we carried out a PMF analysis of PM2.5 sources using hourly
data including inorganic ion species, OC, EC, and trace elements, measured in Shanghai during 1–25
December 2014. The aim is to explore with the field data the time-resolution impact on PMF apportion-
ment using the averages of the hourly data, more specifically, to characterize the benefits gained from
the enhanced data time resolution in terms of providing improved source apportionment results. This will
help to identify the specific advantages of high-resolution data and to understand differences with PMF
source apportionment results obtained with daily/subdaily resolution measurements, for which a
significantly larger database and understanding have been accumulated. The results from this work will
also help to guide efforts balancing data collection frequency and obtaining sufficient materials for
high-quality detection by the instruments.

2. Methods
2.1. Sampling and Experiments

All the measurements were conducted at a monitoring site located on the rooftop of a five-story building at
the Shanghai Academy of Environmental Science (31.17°N, 121.43°E) in the southwest of the central urban
area of Shanghai (Qiao et al., 2014; Wang et al., 2015). The site is mostly surrounded by commercial properties
and residential dwellings and could be regarded as a representative urban site influenced by a wide mixture
of emission sources. The meteorological parameters, including temperature (T), relative humidity (RH), and
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wind speed (WS), were monitored at the same site. Gaseous pollutants, including nitrogen oxides (NOx),
carbon monoxide (CO), and sulfur dioxide (SO2), were also measured.

The monitoring instruments for PM2.5, water-soluble inorganic species, and carbonaceous materials have
been described in detail elsewhere (Qiao et al., 2014). Briefly, the concentration of PM2.5 was measured by
an online beta attenuation particulate monitor (FH 62 C14 series, Thermo Fisher Scientific). Carbonaceous
materials (OC and EC) were monitored by a semicontinuous OC/EC analyzer (model RT-4, Sunset
Laboratory, Tigard, OR, USA). The water-soluble inorganic species (Cl�, NO3

�, SO4
2�, Na+, NH4

+, K+, Mg2+,
and Ca2+) were measured by MARGA (Model ADI 2080, Applikon Analytical B.V.).

Concentrations of 22 elements (K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Ba, Au, Hg, Tl, and
Pb) in PM2.5 were monitored by an ambient elemental monitor (Xact® 625 Ambient Continuous Multi-metals
Monitor, Cooper Environmental Services, Tigard, OR, USA) using nondespersive X-ray fluorescence (XRF) ana-
lysis (Battelle, 2012). The hourly sampling duration was chosen to match the sampling frequency of MARGA
and RT-ECOC instruments. Ambient air was introduced through a verified PM2.5 cyclone inlet and deposited
on a Teflon filter tape at the flow rate of 16.7 L/min. The PM deposit was then advanced into the analysis area
for XRF analysis at each hour while the next sample was collected. Among the monitored elements, five ele-
ments (Co, Sn, Sb, Au, and Tl) were excluded due to over 95% of the data being below detection (i.e., zero
concentration); Ag and Cd were also excluded as ~50% and ~80% of the data falling below their respective
instrument MDL (Ag: 0.0043 μg/m3; Cd: 0.0058 μg/m3; Table S1). Hg and Ga were not included as off-line
filter-based data were not available for quality validation. The sampling period starts at 11:00 a.m. 1
December and ends at 19:00 p.m. 25 December 2014. About 70-hr were excluded due to invalid sampling
or sampling failure by MARGA or Xact 625 (see Text S1). The valid data rate is 88%.

2.2. Positive Matrix Factorization

The PMF model is a receptor model widely used to resolve pollution sources and quantify the source contri-
butions to ambient concentrations (Paatero & Tapper, 1994). It decomposes the measured data matrix into
factor profile and factor contribution matrix, on the basis of finding the minimum value of the Q function,
with nonnegative constraints (equations (1) and (2)):

xij ¼
Xp
k¼1

gikf kj þ eij; gik≥ 0; f kj ≥ 0 (1)

Q ¼
Xn
i¼1

Xm
j¼1

eij
uij

� �2
(2)

xij is themeasured concentration, gik is the source contribution of the kth factor to the ith sample, and fkj is the
factor profile of jth species in the kth factor. eij is the residual, and uij is the uncertainty. uij was calculated as
(xij × error fraction + 1/3 × MDL; Reff et al., 2007), where MDL is the method detection limit. The MDL values
are listed in Table S1. They are retrieved from Jeong et al. (2016) and Phillips-Smith et al. (2017) for Xact mea-
sured elements, Makkonen et al. (2012) for MARGA ions, and Malaguti et al. (2015) for OC and EC. For data
below MDL, the uncertainty was set as 5/6 × MDL (Norris et al., 2014). The error fractions were initialized
according to the above references (0.1 for the elements and 0.15 for MARGA ions and 0.15 for OC and EC)
and finally scaled to 0.21 for elements and 0.12 for OC and EC, which give better model performance for ele-
ments (especially for Cr and Ni which showed larger variation), and balanced scaled residuals from various
instruments (Crippa et al., 2013).

In this study, the Environmental Protection Agency (EPA) PMF version 5.0 was used to perform the analysis
(Norris et al., 2014), which provides three uncertainty estimation methods to examine the robustness of
the solution, namely, bootstrap (BS), displacement (DISP), and bootstrap combined displacement (BS-DISP).
BS means randomly resamples the original data matrix and recomputes the model solution. The BS factors
are mapped to the base factor with which the correlation of factor contributions is highest, and exceeds a
user-selected threshold (default R ≥ 0.6). The percentage of mapping can provide the reproducibility of dif-
ferent factors. DISP involves displacing each element fij in the factor profile matrix far from their base value
until the change of Q reaches the predefined maximum change (dQmax). In DISP, sometimes the factors
change somuch that they change identities yielding a factor swap. The extent of the factor swap can indicate
the uncertainty of different factors. BS-DISP is a combination of the BS and DISP methods. The elements from

10.1029/2017JD027877Journal of Geophysical Research: Atmospheres

WANG ET AL. 5286

 21698996, 2018, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2017JD

027877 by Shanghai U
niversity, W

iley O
nline L

ibrary on [23/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



factor profiles resolved using the resampled data matrix are displaced. BS mainly evaluates random errors of
the solution and partially rotational ambiguity, which indicates the possibility of multiple mathematical
solutions with the same Q value. DISP only evaluates the rotational ambiguity of the solution. BS-DISP
evaluates both random errors and rotational ambiguity. The three uncertainty methods can also provide a
distribution range of the factor profiles through resampling for multitimes and displacing with the Q value
change within the preset value. Further details related to the error estimation methods can refer to Brown
et al. (2015), Paatero et al. (2014), and Vossler et al. (2016).

3. Results and Discussion

The pollution episodes occurred mostly in winter, due to more frequent stagnant atmospheric conditions
and enhanced local and regional emissions (Wang et al., 2015). The monitoring data for this work were col-
lected during 1–25 December 2014. The time series of hourly meteorological parameters and PM2.5 concen-
trations and average PM2.5 chemical composition are shown in Figure 1. The average temperature was 6.6°C,
and the RH was 45.6%. West wind prevailed during this period, and the WS was only 0.8–1 m/s in 90% of the
time. These conditions are very favorable for pollutant accumulations. Average PM2.5 concentrations were
63.5 ± 33.0 μg/m3, with organic aerosol contributing to 37% of the total mass, by applying the average
organic aerosol to OC mass convert factor of 1.84 from Canagaratna et al. (2015). Nitrate, sulfate, and ammo-
nium contributed to 18%, 12%, and 11%, respectively. Measured total elements account for 6% of PM2.5 mass
on average. The concentration statistics of the measured individual component are summarized in Table 1.
The mean concentrations are >70 and 17–300 times the respective MDL for the major components and
the 13 elements, respectively. A summary of the diurnal variation of the individual species is shown in
Figure S1, and the diurnal variation of the meteorological parameters and gaseous pollutants are shown in
Figure S2.

Figure 1. The time series of hourly meteorological parameters (temperature [T], relative humidity [RH], wind speed [WS],
and wind direction [WD]) and (a) PM2.5 concentrations and (b) average PM2.5 chemical composition. (OA = 1.84*OC,
Canagaratna et al., 2015).
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3.1. Data Validation and Quality Assessment

The array of online instruments, including PM2.5 mass monitor, MARGA,
RT-ECOC, and online XRF monitor, was operated according to their
respective standard procedures for calibration and routine monitoring.
The details are described in Text S1.

As part of data validation process, the online measurements were com-
pared with concentrations obtained with off-line laboratory analysis of
collocated daily filter samples (N = 24). The filter samples were collected
from 09:00 a.m. to 09:00 a.m. using a multichannel PM2.5 sampler oper-
ating at 16.7 L/min. A total of 24 samples were obtained and subjected
to determination of mass and analysis of ions, EC, OC, and elements.
Briefly, PM2.5 mass was obtained gravimetrically by weighing Teflon fil-
ters before and after sampling in a RH and temperature controlled
environment (50 ± 5%RH, 20 ± 1°C) using a balance with a precision
of 1 μg (Mettler Toledo, Model XP-6). The elements were analyzed by
an energy-dispersive XRF spectrometer (PANalytical, Epsilon 5), inor-
ganic ions were analyzed using ion chromatography, and OC and EC
were analyzed using a DRI thermal/optical ECOC analyzer (Model
2001A), following the IMPROVE-A protocol. The online data (N = 512)
were averaged to daily resolution according to the filter sampling time
interval for comparison with the off-line filter measurements.

Figure S3 shows the linear regression plots of the online measurements
against the filter-based measurements, demonstrating good agree-
ment when visually compared with the 1:1 unity line. Table S2
summarizes the slopes, intercepts, and Pearson correlation coefficient
(Rp). Excellent correlations (Rp > 0.96) were observed between online
and off-line measurements of PM2.5 mass and major components.
The correlations for elements are also very good, with Rp varying from
0.71 for Ca and Ba to 0.95 for Pb (Table S2). Table S3 lists the bias results,
which are calculated to be the mean percentage difference of the 24

paired concentrations. With the reasonably tight correlation, the mean bias could be used to indicate the
degree of agreement between online and off-line data. The mean bias was less than 20% for PM2.5

and the major components, while it was more variable for the elements, from less than 10% for Cu, Fe, K,
Mn, Ni, Se, and Zn to ~30% for As, Ca, Cr, V, and Pb. In the verification study conducted by Battelle for the
U.S. EPA, online measurements by the Xact 625 were compared with those measured using off-line analysis
by inductively coupled plasma mass spectrometry (Battelle, 2012). The mean bias for six of the above
elements (Ca, Cu, Mn, Pb, Se, and Zn) was reported, with 75% for Pb and 0.7–31% for the other five elements
(after taking the absolute value of the bias). The bias as determined in our work is comparable or better
than those reported in the U.S. EPA-commissioned verification study. This more favorable comparison
outcome is most likely attributable to the generally higher ambient concentrations of these elements in
our study (Table 1).

The bias for Ba was exceptionally high, reaching 139%. The linearly regression plot for Ba indicates a nearly
unit slope value (0.967) but a positive intercept value (0.029 μg/m3) that is comparable in magnitude to
the average Ba concentration in the samples (0.06 μg/m3). This may signal that the Xact 625 filter tape back-
groundmay have contributed significantly to the positive intercept for Ba. This result suggests that analysis of
the blank filter tape should be part of the routine daily quality control checks of the online XRF instrument.
We note that this positive bias of Ba would not impact source identification, as PMF relies on data variation
for resolving source factors.

3.2. PMF Results of Hourly Data (PMF1h)
3.2.1. Factor Number Selection
PMF analysis was applied to the combined hourly data covering 13 elements (K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn,
As, Se, Ba, and Pb), 4 inorganic species (Cl�, NO3

�, SO4
2�, NH4

+), OC and EC data, and PM2.5 mass

Table 1
Statistics of Hourly Concentrations of PM2.5 and Measured Components, Criteria
Pollutants, and Meteorological Conditions

Avg SD Min Max

PM2.5 and measured components (μg/m3)
PM2.5 63.54 32.96 6.26 180.99
Chloride 3.57 2.25 0.36 13.01
Nitrate 11.24 6.83 1.11 47.27
Sulfate 7.47 3.86 1.71 22.87
Ammonium 6.76 4.04 0.80 25.20
OC 12.59 6.21 3.47 35.58
EC 3.04 1.89 0.43 10.95
K 1.21 0.58 0.17 2.89
Ca 0.71 0.68 0.031 5.79
V 0.0060 0.0048 BDa 0.032
Cr 0.012 0.012 0.00021 0.13
Mn 0.085 0.042 0.0078 0.30
Fe 1.19 0.82 0.14 7.40
Ni 0.0068 0.0062 0.0010 0.095
Cu 0.029 0.021 0.0024 0.12
Zn 0.42 0.27 0.030 1.86
As 0.018 0.011 0.00048 0.058
Se 0.0075 0.0047 0.00045 0.031
Ba 0.060 0.050 0.0070 0.45
Pb 0.10 0.065 0.010 0.48
Criteria pollutants and meteorological conditions
O3 (ppb) 9.63 9.45 1.03 34.61
CO (ppm) 0.86 0.36 0.23 2.45
SO2 (ppb) 13.30 7.12 1.15 39.60
NOx (ppb) 73.31 55.30 16.33 427.53
WS (m/s) 1.03 0.50 0.78 4.26
RH (%) 45.63 14.93 14.81 78.72
T (°C) 6.62 2.81 1.82 14.01

aBelow detection limit.
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concentration. The PM2.5 mass concentration was included in PMF as the total variable, which by default was
weighted as “weak” (Norris et al., 2014). The 512 × 20 data matrix was subjected to the final PMF analysis.

Four to 17 factors were initially tested to find the optimal factor numbers. The ratio Q/Qexp (Qexp ≈ n × m-
p × (n + m)) is shown in Figure S4, where a noticeable decreased value suggests an improved solution,
and thus, the parameters experience less dramatic change. We note that the Q/Qexp value trends to 0.4
and this value ideally trends to 1 for a large number of factors. It is possible that the low Q/Qexp value was
due to the underestimation of the input errors. While this is not crucial for the validity of the subsequent
analysis, future efforts are needed on characterizing measurement uncertainties with the suite of analyzers
providing the input data. The Q/Qexp change before eight-factor solution is larger than 14%, while after
eight-factor solution, the change is less than 11%). Furthermore, eight factors give the most explainable
source profiles. The seven-factor solution cannot separate the Cr&Ni industrial point source from tire wear,
while the nine-factor solution produces a residual factor with low loading of all species. The scaled residuals
were normally distributed between�4 and 4, and no obvious biases for species from certain instrument were
found (Figure S5). The eight-factor solution also shows themost stability, with ≥99% of the BS factors mapped
to the base factors, and no factor swaps and no decrease of Q were observed in DISP. Therefore, the eight-
factor solution was regarded to be the most plausible outcome. In the BS-DISP uncertainty method, 92%
of BS resamples were accepted, and there was a 0.3% decrease of Q and minimal swaps (1–2) for secondary
sulfate, secondary nitrate/sulfate, coal combustion, and Cr&Ni point source at the lowest dQmax.
3.2.2. Factor Profile Interpretation
The factor profiles and contributions of the eight-factor solution are shown in Figure 2, and the diurnal varia-
tions of individual factor contribution are shown in Figure 3. The correlations between factor contributions
and tracer species (i.e., highest loading species in profiles), meteorological parameters, and gas pollutants
are shown in Table 2.

The secondary nitrate/sulfate (F1) was identified by high concentrations of nitrate, ammonium, and sulfate
(38%). The secondary sulfate factor (F2) is characterized by the high loading of sulfate (47%). The two factors
on average contributed to 27% and 13% of total PM2.5 mass, respectively (Figure 2). The molar ratio of

Figure 2. (a) PMF1h resolved factor profiles (percentage of each species in factor) and (b) time series of PM2.5 factor contributions by individual factor for the eight-
factor solution using hourly data.
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{[NH4
+]-[NO3

�]} to [SO4
2�] in F1 is 2.5, suggesting formation of (NH4)2SO4, while the molar ratio of [NH4

+] to
[SO4

2�] in F2 is 1.2, suggesting formation of (NH4)HSO4. The average diurnal variation of F2 showed minor
differences between daytime and nighttime values, with two small peaks observed during the day (one
around 10:00 a.m. and the other around ~15:00 p.m.; Figure 3), while for F1, much higher contributions
were observed at night, suggesting that the two factors were associated with different formation
mechanisms. F2 was characterized by the highest correlation with RH (R = 0.50) and CO (R = 0.36), while
F1 showed moderate correlations with SO2 (R = 0.37) and CO (R = 0.35; Table 2). These results suggest that
F1 may represent condensation of oxidation products of local emissions in the nighttime plus regional
transportation, while in F2, sulfate formation via aqueous phase oxidation and daytime photochemical
production may be the dominant pathway. Aqueous phase oxidation of SO2 is much faster than gas phase
processes, especially under humid conditions (Seinfeld & Pandis, 2006). The higher RH in the night
facilitates sulfate formation. Sun et al. (2006) also observed increased sulfate formation under high RH in
winter in Beijing.

The third factor (F3) has a high abundance of EC, OC, Cu, and Cl� and is a major PM2.5 source, contributing to
on average 28% of the total mass. The majority of the OC (48%) and EC (69%) was apportioned to this factor
(Figure 2). Vehicle exhaust from tail pipe is an important source for carbonaceous species, and the presence
of Cu may originate from both fuel/lubricant combustion and brake abrasions (Adachi & Tainosho, 2004; Pant
& Harrison, 2013). The morning rush hour peak at around 8:00 a.m. in the diurnal variation supports the
impact of vehicle emissions on this factor (Figure 3). High correlations with NOx (R = 0.84) and CO
(R = 0.77) suggest a strong influence of vehicular/industrial emissions on the factor (Table 1). Huang et al.
(2011) reported the emission inventory of NOx in YRD in 2007 and found that 86% of the NOxwas from indus-
trial sources and 12% from vehicles. The presence of Cl� in this factor may come from coal burning used in
the industrial activities (Huggins & Huffman, 1995; Sun et al., 2013). Thus, this factor is identified as

Figure 3. Diurnal variation of individual factor contributions from PMF1h results. (25th and 75th percentile boxes, 10th and
90th percentile whiskers; the dashed line is the median value, and the solid red line is the mean value).
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vehicular/industrial emissions. The higher nighttime than daytime contribution of this factor may suggest
influence from the planetary boundary layer height variation. In the daytime, higher boundary height
leads to more vertical mixing of the pollutants and facilitates dispersion, while the stagnant nighttime
atmosphere easily accumulates pollutants (Liu & Liang, 2010). We note some presence of K in this factor.
Considering the copresence of EC, Cl�, and K, one could not rule out the possibility of the mixing of
biomass burning in this factor. Previous studies in this region have resolved a biomass burning factor, either
relying on more indicative source tracers (i.e., levoglucosan and mannosan; Feng et al., 2013; Qiao et al.,
2016) or seasonal variation provided through yearlong sampling (Du et al., 2017; Zhao et al., 2015). The
inherent ambiguity in using K alone to identify biomass burning highlights the need for developing online
measurement capabilities formore source specific organic tracers to improve source apportionment accuracy.

Similar to F3, the tire wear factor (F4) is characterized by a sharp morning rush hour peak, but also shows a
small broad afternoon rush hour peak, which is not evident in F3. A significantly higher nighttime level (attrib-
uted to boundary layer height) is absent in F4 (Figure 2). Moderate correlations with NOx (R = 0.47), CO
(R = 0.49), and SO2 (R = 0.50) were observed (Table 2). The separation of F4 with F3 was probably attributed
to their different source profile characteristics. The factor profile of F4 shows high loading of Zn, Mn, Fe, and
Cu (Figure 2), which are often reported to be associated with nonexhaust vehicle emissions such as tire wear
(Pant & Harrison, 2013), while the factor profile of F3 are mainly carbonaceous species, which are character-
istics of the exhaust emission. However, previous PMF studies in this region based on off-line composition
measurements of filter samples did not resolve such a factor (Du et al., 2017; Huang et al., 2014; Qiao et al.,
2016), suggesting the benefit of the online high-resolution measurement. The Fe/Ca and Mn/Ca mass
ratios in this factor were 44.5 and 6.7, much higher than the natural soil and paved road dust samples
(0.8–2.6, 0.01–0.08; Ho et al., 2003), supporting the anthropogenic feature of this factor. The factor contribu-
tion to total PM2.5 mass was minor, only 6%.

As another major source, the coal combustion factor (F5) contains high loading of metals such as As, Se, Pb,
and Cl� and contributes to 23% of PM2.5 mass on average (Figure 2). As and Se are mostly associated with
coal combustion emissions (Chen et al., 2013; Vejahati et al., 2010). Good correlations of this factor with
SO2 (R = 0.71) and CO (R = 0.53; Table 2) further support the identification of this factor. Diurnal variation
of the factor showed low contribution during the day (Figure 3), which may be due to boundary layer height
variation, and indicating the regional characteristic of this factor.

The sixth factor (F6) is characterized by high concentrations of Cr and Ni (Figure 2), which are often used in
industrial processes such as plating, tanning, and metallurgy (Borai et al., 2002; Karar et al., 2006). This factor
shows best correlation with CO (R = 0.35; Table 2). No diurnal variation was observed (Figure 3), and the time
series of this factor showed intense contributions on the last two days of the sampling period (i.e., 24–25
December 2014; Figure 2). The factor still stood out when performing PMF runs without the intense contribu-
tion period, indicating the persistence of the source throughout the sampling period. The residual oil com-
bustion factor (F7) was identified by V and Ni (Figure 2), of which V is often used as a tracer for residual oil
combustion. The V/Ni ratio in this factor was 3.1, very close to the average value (3.6) in international heavy
fuel oils used in the Port of Shanghai (Zhao et al., 2013), suggesting a strong impact of shipping

Table 2
Pearson Correlation (R) of PMF1h Factor Contributions With Corresponding Tracer Species, Meteorological Parameters (Temperature [T], Relative Humidity [RH], and Wind
Speed [WS]), and Gas Concentrations (SO2, NOx, and CO)

PMF factor Tracer speciesa T RH WS SO2 NOx CO

Secondary nitrate/sulfate NO3
� 0.968 0.20 0.22 �0.03 0.37 �0.05 0.35

Secondary sulfate SO4
2� 0.685 �0.08 0.50 0.09 0.02 0.07 0.36

Vehicular/industrial emissions EC 0.930 �0.22 0.17 �0.13 0.39 0.84 0.77
Tire wear Mn 0.754 0.01 0.00 �0.07 0.50 0.47 0.49
Coal combustion As 0.948 �0.22 0.00 �0.02 0.71 0.33 0.53
Cr&Ni point source Cr 0.966 �0.02 0.02 0.07 0.31 0.22 0.35
Residual oil combustion V 0.997 0.30 0.27 0.05 �0.13 0.18 0.05
Dust Ca 0.989 �0.05 �0.54 0.44 0.21 0.07 �0.11

Note. The highest correlation coefficients for each factor are denoted in bold.
aTracer species indicate the species with highest loading in the factor profiles.
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transportation activities on this factor. No diurnal variation was observed (Figure 3), and the factor only
slightly correlated with T (R = 0.30; Table 2). The dust factor (F8) was distinguished by crustal elements Ca,
Fe, and Ba (Figure 2). The Fe/Ca and Mn/Ca mass ratios in this factor were 1.1 and 0.03, in agreement
with the abundance in soil and paved road dust samples (0.8–2.6, 0.01–0.08; Ho et al., 2003). The factor’s
diurnal variation showed a broad peak during the daytime (Figure 3), moderate correlation with WS
(R = 0.44), and negative correlation with RH (R =�0.54; Table 2), suggesting an influence frommeteorological
conditions. The three factors, F6–F8, were minor contributors to PM2.5, accounting for only 2%, 0.2%, and 1%,
respectively.

A sea-salt factor was not resolved despite the coastal location of our study site. This most likely was a result of
a lack of Na+ concentrations in the data matrix for the PMF analysis. Na+ data were not obtained fromMARGA
due to its general low level. In future monitoring efforts, it is worth exploring whether prolonging sampling
time could improve its detection to enable its use in PMF analysis. Compared with previous source apportion-
ment studies based on off-line measurements of filter samples, this study produced results generally consis-
tent with the winter PMF results in Du et al. (2017), more specifically, the major source contributors of
secondary inorganic formation being 40% versus 23% and vehicular emissions being 30% versus 30%. The
coal combustion source in this study (27%) probably corresponds to the industry activities and combustion
source identified in Du et al. (2017) (28% in total). In comparison with the studies by Huang et al. (2014) and
Qiao et al. (2016), this study found lower secondary contribution and much higher coal combustion contribu-
tion and vehicular emission. We note that the latter two did not resolve any industry-related sources in their
studies. Cross-comparing source apportionment results by different methods are needed in the future to
identify deficiencies in various source apportion approaches.

3.2.3. Back Trajectory Analysis of PMF1h-Resolved Sources
Previous studies using source-oriented model indicated the importance of both regional transport and local
emissions for the haze episodes in Shanghai. Wang et al. (2014) identified two types of haze episodes in
November 2010: when under rather weak wind (WS < 0.5 m/s), local emissions dominant, while under mod-
erate wind (~2 m/s), regional transport from upwind areas contributed most. Li et al. (2015) found that the
local emission in Shanghai (~50%) is the largest contributor to the pollution in January 2013, with a similar
meteorological condition in this study.

To investigate the influence of air mass origin on different PMF factor contributions, backward trajectory
analysis was performed using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(http://www.arl.noaa.gov/ready/hysplit4.html). The 36-hr duration backward trajectories arriving at an alti-
tude of 100 m above ground level over the site were calculated every hour from 1 to 25 December 2014
utilizing the Global Data Assimilation System 1° global meteorological data. The trajectories were then clus-
tered according to the similarity in spatial distribution. An optimum solution of five clusters was extracted
according to the change in total spatial variance, and the cluster means are shown in Figure 4. The individual
trajectory in each cluster is shown in Figure S6, together with the corresponding average PM compositions.
The distribution of meteorological parameters and gas pollutants in each cluster is shown in Figure S7.
Clusters 1, 2, and 3 represent continental air masses from the northwest with different trajectory lengths
(cluster 1 > 2> 3), indicating gradually slower air mass. Cluster 1 represents long-range transport air masses
from Mongolia (Inner Mongolia) region, while cluster 3 represents air masses from the China Central Plain.
Cluster 4 represents flows that recirculate from the surrounding regions in the YRD in all directions covering
continental and oceanic areas, resulting in more impact from air masses of local emissions. These four clus-
ters express the dominant trajectories, accounting for 11%, 22%, 45%, and 15% of the total trajectories,
respectively. Cluster 5 represents northeast oceanic air masses and contributes 11% to the total trajectories.
The increasing trend of PM mass from clusters 1 to 3 was probably due to the accumulation of local emis-
sions under calm meteorological conditions (Figure S7). The highest PM concentrations in cluster 3 indicate
the regional transport from the heavily polluted China Central Plain, while the high PM mass in cluster 4 sug-
gests heavy local pollutions. The similarity of PM composition under each cluster indicates the severe back-
ground pollution under the weak background winds. Chloride in winter was reported to be mainly
associated with coal combustion in a number of studies (e.g., Sun et al., 2013; Ye et al., 2003). In this data
set, chloride showed obvious anthropogenic features, for example, high correlation with EC (R = 0.82).
The anthropogenic source likely dominated over the sea-salt input, explaining lack of observation of chlor-
ide increase in cluster 5.
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Source contributions of the resolved factors varied with air mass origins, as seen from the comparison of PMF
factor contributions in each cluster shown in Figures 4 and S8. Secondary nitrate/sulfate, secondary sulfate,
vehicular/industrial emissions, and coal combustion are responsible to the PM pollution in all clusters. The
secondary nitrate/sulfate factor showed highest contributions in clusters 3 and 4, with average contributions
(21.7 and 18.8 μg/m3, 27% and 32%) more than 2 times higher than in clusters 1 (4.16 μg/m3, 15%).
Secondary sulfate factor was less affected by the origin of arriving air masses (5.27–9.83 μg/m3, 11–22%), sug-
gesting contribution from the more localized background air. The slightly higher fractional contribution
under cluster 5 (22%) could be due to the higher RH (Figure S7). Vehicular/industrial emissions showed similar
trend with secondary nitrate/sulfate factor, with higher mass contributions from trajectories in clusters 3 and
4 than clusters 1, 2, and 5, suggesting both local and regional impact. Coal combustion showed much higher
mass contributions under clusters 2 and 3 (15.5 and 24.1), similar to the variation of SO2 (Figure S7), indicating
the strong impact of the regional transport from northern China. Tire wear showed similar contributions
under different clusters (1.56–4.01 μg/m3, 4–7%), supporting influence from local emission sources. Cr&Ni
point source showed similar contributions under different air masses, although the high episodes occur
under oceanic cluster 5. Residual oil combustion showed higher contributions under oceanic trajectories
(clusters 4 and 5), supporting air masses associated with ship emissions. Likewise, dust showed higher con-
tributions under long-range transport trajectories (cluster 1), indicating a superregional input.

3.3. Time-Resolution Impact on PMF

To examine the impact of time resolution on PMF results, two additional data sets were generated by aver-
aging the 1-hr resolution data (N = 512) into 4-hr (N = 145) and 6-hr (N = 97) time intervals. Longer time inter-
vals (e.g., 8 or 12 hr) yielded data sets too small (70 × 20 or 50 × 20) to generate sufficiently robust PMF results.
The shorter periods (e.g., 2 or 3 hr) resulted in little difference compared with the hourly data, implying that
time series of 2- or 3-hr measurements would also be adequate to capture the source dynamics at this site in
the winter. Similar analysis of time-resolution impact would be beneficial for months of lower pollution, for

Figure 4. PMF1h factor contribution in different clusters between 1 and 25 December 2014. The center map shows the back trajectory cluster means (indicated by
the colored lines). The pie chart components indicate the percentage contribution of individual PMF1h factor (indicated by the surrounding numbers), and the
size of the pie chart is proportional to the modeled PM2.5 mass in each cluster.
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which ambient concentrations under hourly sampling conditions might approach or fall below the detection
limits of some online instruments.

For the 4-hr averaging case, theoretically, there are four different combinations, that is, starting hour from
00:00 (Case #1), 01:00 (Case #2), 02:00 (Case #3), to 03:00 (Case #4) by every hour increase. Take Case #1
as example, the individual sample periods within 24 hr are 00:00–04:00, 04:00–08:00, 08:00–12:00,
12:00–16:00, 16:00–20:00, and 20:00–00:00. Similarly, for the 6-hr average case, there exist six different
combinations, that is, starting hour from 00:00 (Case #1) to 05:00 (Case #6) by every hour increase. After
averaging, four different data matrices of 145 × 20 from 4-hr average data and six different data matrices
of 97 × 20 from 6-hr average data were obtained and subjected to PMF analysis (PMF4h and PMF6h). The pre-
vious studies examining time-resolution impact (Peng et al., 2016) did not consider the different averaging
combination, which from the results in this study, cannot fully characterize the variations due to coarse time
impact. The uncertainty for each averaged data point was calculated according to the error propagation
method described earlier.

3.3.1. Factor Profile Variations
In order to compare with PMF1h, a same factor number, that is, eight-factor solution, was chosen for PMF4h
and PMF6h data sets. However, it should be noted that for the coarse-time smaller data set, less factors will
probably be resolved to keep more robust solution, if no previous 1-h data were available. The eight-factor
solutions from the PMF4h and PMF6h data sets were compared with that of PMF1h. The factor profiles of
the eight-factor solutions in different cases of PMF6h and PMF4h are shown in Figure 5. Generally, the identi-
fied eight factors were similar to those of PMF1h, especially for PMF4h. However, noticeable variations were
observed among different cases of PMF4h and PMF6h solutions, mainly for non-source-specific species. As
indicated by the coefficient of variation (CV, standard deviation divided by mean), the loadings of source-
specific markers in their respective factors from different cases were very stable. In PMF4h, the CV values of
the source-specific markers ranged from 3% for dust to 19% for tire wear and coal combustion; in PMF6h,

Figure 5. Factor profiles resolved in individual cases of (a) PMF4h and (b) PMF6h. The factor profiles in PMF1h are shown in dashed line.
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the CV ranged from 7% for Cr&Ni point source and residual oil combustion factors to 26% for coal combustion
and 49% for tire wear factor in PMF6h. In comparison, the case-to-case variations of non-source-specific
species were noticeable, and larger in PMF6h than in PMF4h. For example, the CV of non-source-specific
species in the secondary nitrate factor ranged from 14% for K and Se to 200% for Cu in PM4h and 24% for
OC to 237% for Zn in PM6h.

In reference to PMF1h solutions, factors in some cases of PMF4h and PMF6h gave more mixed profiles, with
slightly lower loading of markers and higher loading of the non-source-specific species. In PMF4h, individual
factors showed very similar factor profiles to those in PMF1h, except for Case #1, which showed more profile
mixing among tire wear, coal combustion, and Cr&Ni point source (Figure 5a). In PMF6h, secondary sulfate,
vehicular/industrial emissions, and residual oil combustion were consistent among different cases and very
similar to those in PMF1h; however, secondary nitrate/sulfate, tire wear, coal combustion, Cr&Ni point source,
and dust factor showed larger variations among PMF6h cases and noticeable deviations from those in PMF1h
were observed in some PMF6h cases (Figure 5b). For example, the PMF6h source profile of the secondary
nitrate/sulfate factor in Cases #1, #2, and #4 closely resembled the corresponding PMF1h profile, but Cases
#3 and #5 showed more mixed profiles with coal combustion and secondary sulfate associated species
(i.e., As, Se, and Pb with SO4

2�), and Case #6 showedmore mixed profiles with industry/mobile emission asso-
ciated species (i.e., OC and EC).

Table 3
Summary of Error Estimation Diagnostics for PMF4h and PMF6h Results

Case Q/Qexp

BS DISP BS-DISP

BS factor
mapping to base
factors <100%

Decrease
in Q

Factors swaps at lowest
dQmax

#Rejected BS
resamples

Decrease
in Q

Factors swaps at lowest
dQmax

PMF4h
#1 2.03 Sulfate: 79% 0.009 No swaps 62 out of 100, mainly due

to swapping of factors
4.115 All factors swap 2–10 times

except residual oil combustion.Tire wear: 83%
#2 2.07 Tire wear:70% 0.065 No swaps 75 out of 100, mainly due

to swapping of factors
5.335 All factors swap 1–17 times

except dust.Sulfate: 87%
Cr&Ni: 92%

#3 2.07 Tire wear: 79% 0.028 No swaps 81 out of 100, mainly due
to swapping of factors

7.276 All factors swap 1–13 times
except dust.Sulfate: 87%

Cr&Ni: 98%
Coal: 99%

#4 2.02 Tire wear: 79% 0.027 No swaps 68 out of 100, mainly due
to swapping of factors

0.885 All factors swap 2–10 times
except dust.Cr&Ni: 84%

Sulfate:94%
Nitrate:99%

PMF6h
#1 2.65 Cr&Ni: 98% 1.89 Vehicular/industrial factor and

tire wear swap 7 times
Faileda

Sulfate: 94%
Tire wear: 96%

#2 2.71 Tire wear: 76% 1.49 Tire wear: 8 times; nitrate factor:
6 times; vehicular/industrial
and sulfate swap once

Failed
Sulfate: 87%
Cr&Ni: 94%

#3 2.69 Tire wear: 89% 0.03 No swaps 86 out of 100, mainly due
to swapping of factors

1.22 All factors swap 1–18
times.Cr&Ni: 96%

Sulfate: 99%
#4 2.63 Tire wear: 79% 0.51 Tire wear and sulfate factor

swap once
Failed

Sulfate: 98%
Coal, nitrate,
Cr&Ni: 99%

#5 2.62 Tire wear: 93% 0.03 No swaps 62 out of 100, due to
swapping of factors

2.68 All factors swap 1–4
times.Sulfate:96%

#6 2.63 Coal: 84% 2.57 Nitrate factor: 3 times Failed
Sulfate: 94% Coal: 2 times
Tire wear: 99% Tire wear: 4 times

aFailed due to not enough accepted BS-DISP runs.
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More examples of mixed profiles could be identified in PMF6h solutions.
Tire wear from Cases #1 and #6 mixed with coal combustion related
species (As, Se, and Pb), and Case #2 with dust-related elements (Ca,
Fe, and Ba), and Cases #3 and #5 with secondary nitrate/sulfate species
(NO3

� and NH4
+). Coal combustion in Cases #3 and #5 showed an over-

all lower loading of markers and Case #6 more mixed with SO4
2� and

NH4
+. Cr&Ni point source from Cases #2, #3, #4, and #5 showed more

mixed profiles for the non-source-specific species. Dust from Cases
#2, #3, and #4 showed slightly lower loading of the marker species
due to mixing to other factors.

The summary of the error estimation diagnostics for each PMF4h tem-
poral case are shown in Table 3. The Q/Qexp values were similar among
the different PMF4h cases, varying from 2.02 to 2.07. Most BS factor
mappings were larger than 90%, except for tire wear and secondary
sulfate and in one case, Cr&Ni point source. Cases #1 and #2 of the
PMF4h results showed the most stable DISP and BS-DISP results, with
less drop in Q values. Most of the BS resamples were rejected in
BS-DISPmainly due to factor swaps, indicating more rotational ambigu-
ity in PMF4h compared with PMF1h.

Table 3 shows the error estimation diagnostics for PMF6h results. The
Q/Qexp values ranged from 2.62 to 2.71. Generally, a larger variation
in stability for PMF6h was observed, especially for DISP and BS-DISP
results. For BS results, while most BS factor mappings were larger than
90%, the mapping of three factors occasionally fell below 90%, with tire
wear in three cases, secondary sulfate in one case, and coal combustion
in one case, suggesting less reproducibility of these factors. Cases #3
and #5 showed the most stable DISP results with minimum drop of Q
and no factor swaps. Cases #1, #2, and #6 of PMF6h involved factor
swaps several times especially for tire wear, secondary nitrate, and
vehicular/industrial emissions factors. In four out of the six PMF6h cases,
the BS-DISP runs failed, due to the insufficient accepted runs, indicating
more rotational ambiguity in PMF6h compared with PMF4h.

3.3.2. PM2.5 Contribution Variations
The average PM2.5 contributions from each factor from different cases
in PMF4h and PMF6h are shown in Figure 6, and the time series of
PM2.5 contributions are shown in Figure S9. Of the eight source factors,
secondary nitrate/sulfate, secondary sulfate, and vehicular/industrial
emissions showed relatively stable contributions among different
cases, with a CV of 5–17% in PMF6h and PMF4h, where the variation
can be attributed to the stability of their marker species, all of which
are major components of PM2.5. For the factors with trace elements
as marker species, variation of the non-source-specific species had a
notable influence on the average PM2.5 contributions. Tire wear
showed similar variability in source contributions in the PMF4h solu-
tions (CV: 19%), but larger variations in PMF6h solutions (CV: 40%), with
Cases #2, #3, #4, and #5 showing much higher contributions than the
other cases, due to factor mixing of the common major species. Coal
combustion showed large variations in both PMF4h and PMF6h solu-
tions, with a CV of 31% and 39%, respectively. For the three minor
sources, Cr&Ni point source showed the largest CVs (81–141%) due to
factor mixing, while residual oil combustion and dust showed relatively
lower variations (CV: 23–69%) due to less mixing.

Figure 6. Comparison of average source contributions (μg/m3) of individual
factors among different cases of (a) PMF4h and (b) PMF6h. The blue squares
are coefficient of variation (CV) values of individual factor source contributions
across all cases of PMF4h or PMF6h.

Figure 7. Site comparison of source contribution to PM2.5 by individual factor
from PMF4h and PMF6h with PMF1h; the whiskers indicate the lower and upper
interval estimate from (a) BS and (b) DISP error estimation methods.

10.1029/2017JD027877Journal of Geophysical Research: Atmospheres

WANG ET AL. 5296

 21698996, 2018, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2017JD

027877 by Shanghai U
niversity, W

iley O
nline L

ibrary on [23/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The variations in source contribution to PM2.5 were not only impacted
by the mixing of factor profiles, but also the uncertainty in the PMF
solutions. Comparison of the average source contributions from indivi-
dual factors by PMF1h, PMF4h, and PMF6h are displayed in Figure 7, with
BS and DISP error estimation ranges also shown (The error estimation
ranges for individual cases in PMF4h and PMF6h are shown in Figures
S10 and S11). The BS approach mainly evaluates random errors of the
solution, which are related to the size of the input data matrix, while
DISP only evaluates the rotational ambiguity of the solution (Paatero
et al., 2014). For factors with major species as identifying markers, that
is, secondary nitrate/sulfate, secondary sulfate, and vehicular/industrial
emissions, the average contributions were comparable among PMF1h,
PMF4h, and PMF6h solutions. For factors with the trace species as mar-
kers, coal combustion showed a large variation, due to the
higher/lower mixing of major species in profiles. Tire wear and Cr&Ni
point source showed higher contributions due to mixing. While for resi-
dual oil combustion and dust, similar contributions were obtained, con-
sistent with the stability of the factor profiles. In terms of the
uncertainty ranges, PMF4h and PMF6h showed similar BS uncertainty
ranges compared with PMF1h, indicating less impact deriving from

the data point reduction in PMF4h and PMF6h, while obvious increased uncertainty ranges by the DISP
method in PMF4h and PMF6h were found, indicating larger rotational uncertainty in PMF4h and PMF6h results.

As the average time increased from 4 to 6 hr, the PMF-resolved source contributions showed larger variations.
For individual cases, it was observed that those with higher stability (Cases #3 and #5 of PMF6h and Case #1 of
PMF4h) showed the largest difference in contribution (i.e., more mixed factor profiles), while the rest exhibit-
ing more rotational ambiguity gave closer contributions to PMF1h.
3.3.3. Insights Into Integrated-Sampling
Data averaging reduces the between-sample variability in the input data, as indicated by the CV of the input
tracer species for each factor in PMF1h, PMF4h, and PMF6h (Figure 8). The 6-hr averaging significantly
decreases the data variability. For example, the CV of Ca (dust tracer) decreases from 95% for hourly data
to 86–88% for 4-hr averaged data, and further down to 30–42% for 6-hr average data. Less variability of
the input data generates less distinctive (i.e., more mixed) PMF profiles with increased rotational ambiguity,
especially for longer integrated samples. The variability in the results among different cases, especially for
PMF6h, was likely caused by differences in the input data and increased rotational ambiguity. The various
averages impact interspecies correlations, especially for species with very different variability patterns. The
longer the averaging time, the larger the case-to-case difference. The largest difference across cases was
3-hr shifting in PMF4h versus 5-hr shifting in PMF6h. Thus, for sampling of longer integrated time periods,
larger variability is associated with the selection of sampling start/end times. Additionally, larger rotational
ambiguity caused by less-data-difference also increases the uncertainty of PMF results.

In order to maintain the resolved source information for the lower-time-resolution data, samples collected
under different meteorological conditions (e.g., samples collected in different seasons) are needed, or more
specific tracer species are needed to compensate the loss of variability due to the longer sampling period.
High-time-resolution sampling is needed for a short campaign (e.g., one to two months) with similar meteor-
ological conditions, in order to achieve more robust and rotationally unique solutions.

4. Conclusions

PMF analysis was applied to an hourly data set (PMF1h) covering major components and trace elements in
PM2.5 collected in Shanghai during 1–25 December 2014. The hourly trace element measurements were cru-
cial in source apportionment as some elements (e.g., As, V, and Ca) are unique source tracers. Eight source
factors were resolved using the hourly data set of 520 samples and 19 chemical components. Among them,
secondary nitrate/sulfate, vehicular/industrial emissions, and coal combustion were major sources, account-
ing for 27%, 28%, and 23%, respectively. Trajectory analysis indicated significant impact of local emissions on

Figure 8. Coefficient of variation (CV) of the tracer species (i.e., highest loading
species in factor profiles) for individual factor across different cases for PMF1h,
PMF4h and PMF6h.
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most pollution sources, while more regional impact of dust emissions and coal combustion. Thus, control
emissions in the upwind areas, especially central plain, as well as control local emissions (mainly vehicles
and industries) are both important for the effective pollution control in Shanghai in winter.

Taking advantage of the large data set, we examined the time-resolution impact on PMF solutions through
carrying out separate PMF analyses of 4-hr average data (PMF4h) and 6-hr average data (PMF6h). While similar
factors were identified, more mixed profiles were resolved by PMF using the lower-time-resolution data,
especially in PMF6h. The profile mixing was particularly noticeable for source factors with trace species as
identifying markers (i.e., tire wear, coal combustion, and Cr& Ni point source), due to the combined effect
of mixed profiles and increased rotational ambiguity in the PMF results of the reduced time-resolution data
sets. Such outcomes are likely borne from the reduced sample-to-sample variability in the averaged data
matrix. These results support performing PMF analysis with higher-time-resolution measurements and
greater variability in the data matrix to achieve more robust source apportionment results.

On the other hand, PMF analyses of 2- and 3-hr averaging periods resulted in little difference compared with
the hourly data, implying that time series of 2- or 3-hr measurements would also be adequate for source
apportionment at this site in winter. This finding suggests that relying on sampling periods longer than
hourly could be considered on days of lower pollution, as ambient concentrations of some species might
approach or fall below the detection limits of hourly sampling.
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