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A B S T R A C T   

The outbreak of coronavirus (COVID-19) has forced China to lockdown many cities and restrict transportation, 
industrial, and social activities. This provides a great opportunity to look at the impacts of pandemic quarantine 
on air quality and premature death due to exposure to air pollution. In this study, we applied the difference-in- 
differences (DID) model to quantify the casual impacts of COVID-19 lockdown on air quality at 278 cities across 
China. A widely used exposure-response function was further utilized to estimate the short-term health impacts 
associated with changes in PM2.5 due to lockdown. Results show that lockdown has caused drastic reduction in 
air pollution level in terms of all criteria pollutants except ozone. On average, concentrations of PM2.5, PM10, 
NO2, SO2 and CO are estimated to drop by 14.3 μg/m3, 22.2 μg/m3, 17.7 μg/m3, 2.9 μg/m3, and 0.18 mg/m3 as 
the result of lockdown. Cities with more confirmed cases of COVID-19 are related to stronger responses in air 
quality, despite that similar lockdown measures were implemented by the local governments. The improvement 
of air quality caused by COVID-19 lockdown in northern cities is found to be smaller than that of southern cities. 
Avoided premature death associated with PM2.5 exposures over the 278 cities was estimated to be 50.8 thousand. 
Our results re-emphasize the effectiveness of emission controls on air quality and associated health impacts. The 
high cost of lockdown, still high level of air pollution during lockdown and smaller effects in northern cities 
implies that source-specific mitigation policies are needed for continuous and sustainable reduction of air 
pollution.   

1. Introduction 

In December 2019, several cases of “unknown viral pneumonia” 
were first reported in Wuhan, China (WHO, 2020), which was detected 
and later termed COVID-19 in January 2020 (Cui et al., 2019). By the 
middle of February 2020, there were around 60,000 confirmed cases 
within China (DXY, 2020). Around January 24th, 2020, China’s pro-
vincial governments announced first level (Level I) major public health 
emergent response in order to reduce the intensity of the epidemic and 
slow down the increase of number of new cases. During the Level I 
response phase, all kinds of human activities were greatly reduced. In-
dustries except power plants and certain industries (e.g. iron, medical 
and pharmaceutical) were strongly affected by the lockdown. Cement 
production is reported to be 29.5% lower in January and February 2020 
than in 2019 (Huang et al., 2021). For non-industrial sectors, national 
traffic volume is estimated to drop by more than 70% due to restrictions 

on the transportation sector (Huang et al., 2021; Li et al., 2021; Xinhua 
News, 2020), which is the dominant contributor of NOx emission re-
ductions during lockdown. Construction sites, restaurants, schools, and 
almost entire service sectors were suspended proactively or reluctantly. 
This massive national lockdown has inevitably caused tremendous im-
pacts on all aspects of people’s life. Extensive studies have been and 
continued to be conducted to investigate the impacts brought by 
COVID-19 on different aspects. For instance, many studies have been 
focusing on the impacts of COVID-19 on the economy, both microeco-
nomic (i.e. stock market, household consumption, unemployment) 
(Baker et al., 2020a, 2020b; Ramelli and Wagner, 2020; Baker et al., 
2020a,b; Coibion et al., 2020) and macroeconomic (e.g. supply and 
demand) (Guerrieri et al., 2020; Del Rio-Chanona et al., 2020; Ludvigson 
et al., 2020). There are also studies looking at the impacts on psychology 
(e.g. Hamermesh, 2020) due to individual social distancing. The impact 
of COVID-19 on the natural environment has also been a hot topic. For 
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example, Le Quere et al. (2020) quantified the decrease in global CO2 
emissions during forced confinement. A couple of studies look at the 
relationship between the severity of air pollution and COVID-19 infec-
tion (Zhu et al., 2020; Fattorini and Regoli, 2020; Contini and Costabile, 
2020; Xu et al., 2020; Hendryx and Luo, 2020; Conticini et al., 2020). 
Some studies focused on the transmission of COVID-19 via airborne 
aerosols (Zhang et al., 2020; Wang and Du, 2020). 

Meanwhile, regional air pollution has been a major environmental 
problem in China in the past decades due to urban expansion and 
industrialization. High concentrations of PM2.5 (fine particles with an 
aerodynamic diameter of less than 2.5 μm) during the winter time and 
elevated ozone concentrations during the summer time (K. Li et al., 
2019) have posed adverse impacts on public health, especially over 
dense population regions (Song et al., 2017; Maji et al., 2018, 2019). 
Previous studies have reported a wide range of 0.19–1.60 million/year 
premature mortality due to PM2.5 exposure in China and ambient par-
ticulate matter pollution ranks the fourth leading cause of deaths in 
China (Wang et al., 2013; Lim et al., 2012; Liu et al., 2016; Yang et al., 
2013). On the other hand, ground-level ozone is estimated to contribute 
around 70,000 premature deaths in China due to respiratory and car-
diovascular problems (Cohen et al., 2017; Maji et al., 2019). Therefore, 
the Chinese government has issued series of emission control policies, 
with the aim to reduce emissions from various sources, including in-
dustry, mobile vehicle exhausts, coal power plants, and residential ac-
tivities (Karplus et al., 2018; Silver et al., 2018; State Council of the 
People’s Republic of China, 2013; The state council, 2018; Zhang et al., 
2019). As a consequence, the concentrations of SO2 and PM2.5 have 
decreased substantially (Zhang et al., 2019; Ministry of Ecology and 
Environment of China, 2019). The ozone concentration, on the other 
hand, exhibits an increasing trend (Lu et al., 2018) due to less control of 
the VOCs (volatile organic compounds) emissions (P. Wang et al., 2019; 
Yu et al., 2019), and also related to the reduction in PM2.5 concentra-
tions, which could indirectly affect ozone concentrations by altering the 
photolysis rates and heterogeneous reactions (Li et al., 2018, 2019, 
2020; Xing et al., 2017). The annual average PM2.5 concentration of 
mainland China was 39.1 μg/m3 in 2019 (IQAir, 2019), which ranks as 
the 11th most polluted country and is still much higher than the stan-
dard (10 μg/m3) recommended by the World Health Organization 
(WHO). Therefore, it remains an important task to continuously improve 
the air quality in China with the objective of controlling PM2.5 and ozone 
simultaneously. 

No doubt that the outbreak of COVID-19 is a tragedy. Nevertheless, it 
represents a unique opportunity to look at the response of air quality to 
short-term but substantial changes in anthropogenic emissions. A 
number of recent studies thus have been published that discussed the 
changes of air quality in China as well as other parts of the world due to 
COVID-19 (e.g. Mahato et al., 2020; Bauwens et al., 2020; Shi et al., 
2020; Huang et al., 2020; Le et al., 2020; Chang et al., 2020; Sharma 
et al., 2020; Nakada et al., 2020; Rodríguez-Urrego and Rodrígue-
z-Urrego, 2020; Sarfraz et al., 2020; etc.). For studies focusing China, 
some performed extensive analysis of ground observed and/or satellite 
data before and during the COVID-19 lockdown period; some also 
conducted air quality simulations to separate the influences of meteo-
rological variations and emission changes on observed changes in air 
quality (e.g. Zhao et al., 2020; Wang et al., 2020; Huang et al., 2020; Li 
et al., 2020). To give a few examples, Wang et al. (2020) applied an 
integrated meteorology and air quality model to show that unfavorable 
meteorology overwhelmed the benefits of emission reductions, thus 
leading to severe air pollution events during lockdown. Based on 
comprehensive measurements, Huang et al. (2020) found that re-
ductions of primary emissions were partially offset by enhanced sec-
ondary pollution during lockdown. Li et al. (2020) focused on the 
changes of air quality over the Yangtze River Delta region based on 
analysis of observed data as well as model simulations. All these studies 
lead to a similar observation that COVID-19 has resulted in substantial 
reductions in terms of NO2 and PM2.5, with the reductions of the latter 

partially offset by un-favored meteorological conditions or enhanced 
secondary formation. However, a major uncertainty of some of these 
studies is related to the difficulty of accurately estimating emission re-
ductions during COVID-19 lockdown, which would result in subsequent 
uncertainties associated with the modeling results. The influence of 
inter-annual variations of meteorology is another factor that makes the 
story more complicated. 

In this study, we utilized a completely different method to quantify 
the casual effects of COVID-19 lockdown on air quality in China and 
associated short-term health impact. To answer the first half of the 
question, the differences-in-differences (DID) method was applied over 
observed concentrations of criteria pollutants for 278 cities across 
China. The key challenge in evaluating the causal effects of Level I 
response on air quality is to avoid attributing the Level I response to the 
effects of other factors, for example, changes in meteorological condi-
tions, social influences over the same time period. One of the standard 
methods to control these other effects in statistics and economics is the 
DID analysis. The DID analysis avoids the need to specify any of the 
other possible meteorological or social influences by comparing the 
changes in air quality for cities under Level I response to the change for 
cities that are not under Level I response but otherwise subject to these 
similar other influences. The difference between these two differences (i. 
e. differences-in-differences) measures only the effects of the Level I 
response policy. The DID method outperforms the other commonly used 
regression methods (e.g. ordinary least square and time series regres-
sion) as it mitigates the effects of extraneous factors and selection bias by 
comparing the difference between treatment group and control group. 
DID has been used to evaluate the causal impacts of government policies 
and exogenous natural shocks (Currie et al., 2009; Beck, Levine and 
Levkov, 2010; Fu and Gu, 2017; Qiu and He, 2017; Wan et al., 2019). It 
is also becoming prevalence in air pollution field, such as Auffhammer & 
Kellogg (2011), He et al. (2020), Son et al. (2020) and Navinya et al. 
(2020). More details with respect to the DID model can be found in 
Angrist and Pischke (2008). 

Application of the DID method allows us to control the unobserved 
time and city invariant factors or the inter-annual variations associated 
with meteorological conditions. Therefore, our results represent the 
causal impact of COVID-19 lockdown on observed changes in the air 
quality. In this study, we first estimate the changes of air quality due to 
Level I response policy. The level of changes in air pollution associated 
with the severity of COVID-19 outbreak was then investigated and 
different effects of lockdown policy on regional air quality improvement 
for northern and southern cities were contrasted and discussed. Lastly, 
the short-term health impacts related to COVID-19 lockdown was 
quantified as premature mortality due to exposure to ambient PM2.5 
base on a widely-used exposure-response function. 

2. Methodology 

2.1. Data 

The two data sets used in this study include the observed daily air 
quality data from January 1st, 2019 to March 31st, 2020 and the 
cumulated number of COVID-19 confirmed cases for 278 cities in China 
from January 1st, 2020 to March 28th, 2020. The city-level air quality 
data includes daily averaged concentrations of six criteria pollutants: 
PM2.5, PM10 (particles with an aerodynamic diameter of less than 10 
μm), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2) and car-
bon monoxide (CO), which are obtained from China Environmental 
Monitoring Service. The number of COVID-19 confirmed cases is ob-
tained from the DingXiang Doctor pandemic real-time report (DXY, 
2020), which tracks the real-time confirmed cases all over the country. 

2.2. The difference-in-differences (DID) model 

In the basic specification, we estimate how much city-level air 
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quality has improved during the lockdown period. In this model, the 
cities in Level I response are the treatment group and the cities not in 
Level I response are the control group. We define the treatment period 
from the day the Level I response was announced to the day the response 
level was lifted (i.e. changed to Level II response). Different provinces 
and cities have different announce time for Level I response or lock-
down. Most provinces announced the first-level response on January 
24th, 2020 (Global Times, 2020). Guangdong, Jiangsu and Hunan 
provinces are the earliest provinces to announce a Level I response on 
January 23rd while the last province Tibet announced Level I response 
on January 29th. As for Wuhan, the earliest and the most severely 
affected city, a city-level shut down was announced on January 23rd and 
the Level I response was announced at January 24th. We take January 
23rd as the starting date of treatment for Wuhan. 

Besides the treatment and control group setting, we include city fixed 
effects to control the unobserved and time-unvarying city attributes that 
affect air quality, month fixed effects to control the unobserved con-
founding trends that affect air quality and the weekend and holiday 
fixed effect to control the expected drop in pollution during weekends 
and holidays: 

yit = α0 + α1T + Weekend + Holiday + δi + δt + εit (1)  

where the outcome variable yit is one of the air pollution indexes in city i 
on day t, including PM2.5, PM10, O3, SO2, NO2 or CO. α0 is the constant 
term and α1 is the key estimates which measures the air quality 
improvement during lockdown compared with no lockdown. T is a 
dummy variable set to 1 if city i was during Level I response period on 
day t. Weekend and Holiday are 1 if t is a weekend or a national holi-
day. δi and δt are city fixed effect and month fixed effect, respectively. εit 
is the error term. We are mostly interested in coefficients α1 in this 
model as α1 captures the average lockdown effect on air quality for all 
cities. 

To investigate the heterogeneous impacts on Level I response on air 
quality for cities with different severity of COVID-19 outbreak, our 
second analysis uses a panel data difference-in-differences model to 
estimate the level of changes in air pollution associated with the severity 
of COVID-19 outbreak, which is illustrated by Fig. 1. Here the total 
number of confirmed cases by March 28th is used to classify the treat-
ment and control group. We divided the 278 cities into 3 groups 
(Table S1): total number of confirmed cases less than 10 (161 cities), 
between 10 and 99 (181 cities), and above 100 (53 cities). The averaged 
confirmed cases the three groups are 4 (95% CI: 1–9), 33 (95% CI: 
10–93), and 1594 (95% CI: 100–50006), respectively. The group of 
cities with less than 10 cases is treated as the control group. As shown in 
Fig. 2, cities with total number of confirmed cases over 100 are either 

densely populated cities (e.g. Beijing (576), Shanghai (492), Chongqing 
(579)), cities in Hubei province (e.g. Wuhan (50,006), Huanggang 
(4,584)), or cities near Hubei province (e.g. Xinyang (274) and 
Zhengzhou (158) in Henan province). We use the following model 
specification: 

yit = β0 + β1T + β2D2*T + β3D3*T + Weekend + Holiday + δi + δt + εit

(2)  

where D1, D2, D3 are dummy variables which is equal to 1 if the 
cumulated confirmed count of city i falls the corresponding group.1 β0 is 
the constant term. β1 is the causal effects of Level I response on air 
quality for cities in control group (D1). β2 and β3 measure the changes of 
air quality due to lockdown for group 2 (D2) and group 3 (D3) compared 
with the control group, respectively. Similarly, the DID setup avoids the 
need to specify any of the other possible influences by comparing the 
change in air quality for cities in these three groups with different 
outbreak severity but otherwise subject to these same other influences. 
The difference between these differences in air quality measures only 
the effects of the Level I response policy and the severity of outbreak in 
those cities. 

To test the robustness of our results, we tried with three options in 
terms of the control period (as shown in Fig. 3). The first control period 
starts from November 2019 to the end of Level I response period (Sce-
nario 1). For this scenario, both the treatment and control periods are 
winter time. For the second option, we extend the start of the control 
period to January 2019 (Scenario 2) and for the last option we further 
extend the end of the control period to March 31st 2020 (Scenario 3). 

We are mostly interested in the coefficients of the two interaction 
terms, β2 and β3, which represent the effects of COVID-19 lockdown on 
air pollution for different groups of cities compared with the cities with 
least confirmed cases, by controlling for various time and city impacting 
factors. We cluster the standard errors at the city level for both models. 
Table S3 presents the summary of statistical results of the key variables 
used in the DID model. 

A third analysis was performed to investigate the heterogeneous 
impacts of Level I response on cities with or without the coal-based 
centralized heating systems. Winter heating in the northern China is 
usually associated with heavy air pollution due to massive consumption 
of coal. The massive coal consumption could partly offset the 

Fig. 1. Causal effects in the difference-in-differences model.  

Fig. 2. Number of confirmed cases by city in China as of March 28th, 2020  

1 D1, D2 and D3 are multicollinear and perfectly correlated. Hence, we follow 
the tradition in econometrics to drop D1 in equation (2). 
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improvement of air quality caused by Level I response. To test whether 
the Level I response policy has different effects on the regional air 
quality improvement for northern and southern cities in China, we use 
the usual demarcation line of the Qinling Mountains to the Huaihe River 
to divide those cities into two groups (northern and southern), as shown 
in Figure S1. Our third DID model (as shown in Eq. (3)) estimates the 
level of changes in air pollution associated with the lockdown for 
northern and southern cities, respectively. 

yit = γ0 + γ1T + Weekend + Holiday + δi + δt + εit (3)  

where γ1 measures the changes of air quality during lockdown compared 
with no lockdown for cities locate in different regions. The estimation 
results for this analysis are presented in Table 2. 

Two recent studies use similar difference-in-difference approach to 
study the impacts of government measures during the COVID-19 
outbreak on air quality in China. Chen et al. (2020) compared the 
changes in air quality in 2020 versus 2016–2019 during the quarantine 
period (Feb 10 to March 14) with those changes in the before-quarantine 
period (Jan 5 to Jan 20). He et al. (2020) defined some local government 
measures as lockdown policies and compared the air quality changes for 
lockdown cities with the changes for cities without lockdown policies in 
2020. Our paper presents two analyses: the first one is similar to Chen 
et al. (2020), but our treatment is Level I Response policies, which is 
more clearly defined than their quarantine period; the second analysis 
compares the air quality changes between cities with different level of 
confirmed cases. In our view, almost all Chinese cities were in some 
degree of lockdown during the Level I Response period. However, the 
impacts of government policies on people’s behaviors and air quality are 
quite different and the difference depends on how the cities are affected 
by the COVID-19 outbreak. The number of confirmed cases is a better 
measure of how the cities were affected by this outbreak. In short, Chen 
et al. (2020) did not account for the heterogeneity of the impacts of the 
quarantine measures. He et al. (2020) used a different treatment than 
ours and did not discuss its mortality implications. In addition, we 
conduct parallel trend test and robustness checks. Based on the empir-
ical results, we also conduct the counterfactual analysis to calculate 
PM2.5 related premature deaths on the national level. 

2.3. Parallel trend test 

One key assumption of the DID model is the parallel trend assump-
tion which means dependent variable of cities in different groups have 
parallel trends before treatment was implemented, hence the differential 
effects of these groups are caused by the treatment. In the first model, as 
provinces announced the Level I response in a short period of time, it is 
hard to test the parallel trend and we focus on this test for the second 
model. Following Beck, Levine and Levkov (2010), we test the parallel 
trend by examining the dynamics of the relation between lockdown and 
air quality by including a series of dummy variables in the DID regres-
sion to trace out the day-by-day effects of lockdown on PM2.5 and PM10, 
which are the most concerned air quality indicators in the winter. If 
these day-by-day effects are insignificantly different from zero for all 
days before lockdown, then the air quality of these cities in different 

group exhibit parallel trends. 
To examine the dynamics of air quality and lockdown, we re-group 

the cities into two groups: control group is group 1, and new treat-
ment group is group 2 and group 3. We run the following regressions: 

yit = β0 + β1*T + β2*D T − 6
it + β3*D T − 5

it + ⋯ + β9*D T+2
it + Weekend

+ Holiday + δi + δt + εit

(3a)  

where the lockdown interaction dummy variables, D T− j equals one for 
cities in the treatment group in the jth day before Level I response 
announcement, and D T+j equals one for cities in the treatment group in 
the jth day after Level I response announcement, otherwise they equal to 
zero. We exclude the day of announcement, thus estimating the dynamic 
effect of lockdown on PM2.5 and PM10 relative to the day of 
announcement. 

2.4. Premature mortality due to short-term PM2.5 exposure 

In this study, we attempted to estimate the short-term health impacts 
by calculating the premature mortality due to PM2.5 exposures. A 
widely-used exposure-response function (Fang et al., 2016; Gao et al., 
2016) is used to estimate the premature mortality for each group: 

Y =
∑

k
P × (1 − e− βk(C− C0)) × Rk (4)  

where Y is the total number of premature deaths of each group caused by 
ambient PM2.5 exposures due to cardiovascular disease (stroke, ischemic 
heart disease (IHD)) and respiratory disease (chronic obstructive pul-
monary disease (COPD), lung cancer (LC) for adults (≥25 years), and 
acute lower respiratory infection (ALRI) for infants (<5 years)). β is the 
cause-specific exposure-response coefficients and the values are ob-
tained from a meta-analysis study (Lu et al., 2015). The baseline inci-
dence rate (R) at provincial level is obtained from the Tabulation on the 
2010 Population Census of the People’s Republic of China (National 
Bureau of Statistics and Census Office of the State Council, 2010). The 
contribution of each disease to total mortality is based on the national 
estimates from the Global Burden of Diseases (GBD) project of Institute 
for Health Metrics and Evaluation (IHME) and Health Effects Institute 
(HEI) for year 2017. P is the exposed population. The exposed PM2.5 
concentration (C) used in Eq. (4) is the population-weighted PM2.5 
concentration over all cities or cities within a DID group. The threshold 
concentration (C0) of 25 μg/m3 recommended by the WHO air quality 
guidelines (WHO, 2015) is used in this study. More details with respect 
the parameters used in Eq. (4) can be found in our previous study 
(Huang et al., 2020). We first estimate the premature mortality due to 
PM2.5 exposures during the lockdown period based on the 
population-weighted observed PM2.5 concentration. Then this concen-
tration is adjusted based on the T value from the DID model to represent 
average PM2.5 concentration assuming no lockdown occurred. The dif-
ferences of the premature mortality estimated based on these 2 p.m.2.5 
concentrations (observed and adjusted) are considered as the total 
avoided premature death due to lockdown. 

Fig. 3. Settings of the treatment period and the control periods.  
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Health impact due to ozone exposure is ignored since the study 
period is outside the typical ozone season (Wang et al., 2017). However, 
a most recent study by Li et al. (2021) highlights the spreading of ozone 
pollution into winter-spring over the North China Plain due to reduced 
NOx emissions and the ozone health burden is found to be more pro-
nounced in the cool season (Huang et al., 2018; Yin et al., 2017). Thus, 
the health impact associated with elevated ozone concentration during 
the lockdown period may partially offset the health benefits associated 
with the reduced PM2.5 concentration. 

3. Results and discussions 

3.1. Analysis of observed concentrations for different groups 

Fig. 4 compares the national averaged concentration of criteria air 
pollutants before (January 9th – January 23rd, 2020) and during 
(January 24th to February 24th, 2020) Level I response. All pollutants 
except ozone decreased by 19.4% (SO2, Std. Dev.: 16.27%) ~49.8% 
(NO2, Std. Dev.: 9.12%). The concentration of PM2.5 decreased by 34.9% 
(Std. Dev.: 19.80%) on average; maximum relative decrease of PM2.5 
was observed in Suihua (Heilongjiang province) by 55.6% and 
maximum absolute decrease of PM2.5 was observed in Harbin (Hei-
longjiang province) by 91.0 μg/m3. Ozone based concentration indices 
increased by 44.2% (Std. Dev.: 42.76%) for 1-hr maximum ozone (O31) 
and 30.3% (Std. Dev.: 33.73%) for maximum 8-hr average ozone (O38). 
A slight downward trend of city-level PM2.5 concentration during Level I 
response was observed with increased number of accumulated 
confirmed cases (Figure S2). 

We also compare the change of air pollutant concentrations for group 
1 (D1), group 2 (D2) and group 3 (D3) (data not shown). Similar trend 
was observed for all three groups with all pollutants except ozone 
exhibit decreasing trend while ozone increased during Level I response. 
PM2.5 decreased by 28.9% (D1, Std. Dev.: 19.18%), 36.5% (D2, Std. 
Dev.: 20.58%) and 38.3% (D3, Std. Dev.: 17.59%) and the corresponding 
O31 increased by 36.1% (Std. Dev.: 39.18%), 46.2% (Std. Dev.: 43.56%) 
and 51.6% (Std. Dev.: 39.03%). It seems that stronger response of air 
quality was observed for cities with more confirmed cases. 

However, the changes of air pollutant concentrations are associated 
with many controlling factors, for example, variations in meteorological 
conditions, intrinsic seasonal variability, emissions reduction due to 
COVID-19 lockdown, etc. The application of DID model allow us to es-
timate the air quality improvement effect of lockdown without 
observing these factors, which is presented below. 

3.2. Results from the DID model 

Table 1 presents the estimates of Model (1) and Model (2) for the 
samples from November 1st, 2019 to the release of Level I response (i.e. 
Scenario 1 in Fig. 3). Recall that in Model (1) we measured the average 
impacts of lockdown on air quality while in Model (2) we quantified the 
level of air quality improvements associated with the severity of the 
COVID-19. The dependent variables are the eight air pollution indices. 
All control variables are included but we only report the coefficients of T 
(1 if during lockdown, 0 otherwise) and two interaction terms due to 
limited space. These estimates are robust for all indices. On average, 
concentrations of PM2.5, PM10, NO2, SO2 and CO dropped by 14.3 μg/m3 

(by 25.37%, Standard Error: 2.09), 22.2 μg/m3 (25.68%, Standard Error: 
2.33), 17.7 μg/m3 (45.82%, Standard Error: 0.83), 2.9 μg/m3 (20.51%, 
Standard Error: 0.37), and 0.18 mg/m3 (18.20%, Standard Error: 0.02) 
due to lockdown, respectively. Bear in mind that these estimated 
changes are caused by the implementation of Level I response as they are 
the difference between treatment group and control group and many 
other influential factors are controlled. In contrast, the two O3-based 
indices increased by 15.5 μg/m3 (39.93%, Standard Error: 1.04) and 
17.0 μg/m3 (27.31%, Standard Error: 1.33), most likely attributable to 
the sharp reduction in NOx emissions that lead to weaker NO titration 
effects (Zhao et al., 2020; Le et al., 2020). Zhao et al. (2020) statistically 
analyzed the air quality change one week before and one week after 
Level I response for Chinese cities. Their results show a similar corre-
lation between Level I response and air quality. However, as we dis-
cussed earlier, our results measure the causal impacts of Level I response 
on air quality. 

In Model (2), the coefficients of interaction term (β2, β3) of the 
treatment group and lockdown period are significantly negative for all 
indices except O3, which indicates that the air quality of more severely 
affected cities by COVID-19 improved more than those cities with fewer 
cases. On average, the level of PM2.5, PM10, NO2, SO2 and CO for cities in 
D2 group (the cumulated confirmed cases between 10 and 99 as of 
March 28th, 2020) decreased by 8.18 μg/m3 (Standard Error: 1.51), 
15.38 μg/m3 (Standard Error: 2.33), 6.05 μg/m3 (Standard Error: 0.95), 
0.64 μg/m3 (Standard Error: 0.48) and 0.04 mg/m3 (Standard Error: 
0.02) more than those in D1 (accumulated cases less than 10 as of March 
28th, 2020) when comparing lockdown with pre-lockdown period. In 
D3 group, which is the most affected group, the level of PM2.5, PM10, 
NO2 and SO2 decreased by 10.01 μg/m3 (Standard Error: 1.76), 20.48 
μg/m3 (Standard Error: 2.34), 11.34 μg/m3 (Standard Error: 1.05) and 
0.64 μg/m3 (Standard Error: 0.67) compared with D1 during the lock-
down and pre-lockdown period, respectively. Similarly, the O3 level 
increased more for those cities with more confirmed cases. As estimated 
by Model (2), the concentration level of O31 for Group 2 and Group 3 
during the lockdown period shows insignificant difference when 
comparing to the least affected group (D1). 

The DID results indicate that cities with more confirmed COVID-19 
cases are associated with more changes in air quality is interesting, 
which are consistent with other studies for China (Wang et al., 2020) 
and India (Singh et al., 2020). Although all provinces and cities declare 
the highest response level, they implement the stay-at-home/lockdown 
orders differently as some essential productions and activities were still 
under way. It is expected that in most severely affected cities, these 
lockdown measures would be implemented extremely strictly. On the 
other hand, people voluntarily choose to stay at home due to the fear of 
infection, especially for people in those severely affected cities. As 
shown by Goolsbee and Syverson (2020), stay-at-home orders can only 
explain 11.6% of reduction in economic activities during this COVID-19 
pandemic in the United States and economic activities are highly 
influenced by the number of COVID-19 deaths reported in the county. 
More data related to the traffic volume, production and economic ac-
tivities, etc. could substantiate our understanding of the underlying 
mechanism of reductions in air pollution associated with lockdown. 

The test results for possible heterogeneous regional effects of Level I 

Fig. 4. Concentration of criteria air pollutants over 278 cities before and during 
Level I response (Note: the unit of CO is mg/m3; the unit of other pollutants is 
μg/m3). 
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response are presented in Table 2. The negative γ1 for both northern and 
southern cities are consistent with our baseline model results. In 
southern cities, PM2.5, PM10, NO2 and CO decreased by 7.79 μg/m3 

(Standard Error: 0.83), 10.68 μg/m3 (Standard Error: 1.16), 7.05 μg/m3 

(Standard Error: 0.75) and 0.01 mg/m3 (Standard Error: 0.01) due to the 
lockdown. In northern cities, PM2.5, PM10, NO2 and CO decreased by 
1.22 μg/m3 (Standard Error: 1.62), 8.27 μg/m3 (Standard Error: 2.14), 
5.63 μg/m3 (Standard Error: 0.54), and 0.05 mg/m3 (Standard Error: 
0.02) due to the Level I response policy. We also use another specifi-
cation to test whether the differences between South and North are 
significantly greater than 0. It turns out that the differences of reduction 
in PM2.5, PM10 and NO2 are significant. The air quality improvements in 
southern cities are larger than that in northern cities in terms of the 
concentration of PM2.5, PM10 and NO2. 

The smaller improvement of air quality due to lockdown in the North 
might be explained by two reasons. The first one is about the enforce-
ment of Level I response policy. As most of the severely-affected cities 
are located in the South, there is a greater fear of the pandemic in the 
South which would reinforce the lockdown policy. Secondly, the Level I 
response policy restricts gathering and instructs people to stay at home 
where residential heating needs becomes higher. 

One critical component of applying the DID model is the robustness 
check. The robustness of our benchmark results was tested using com-
bination of different starting and ending dates of the sample (i.e. Sce-
nario 2 and Scenario 3). The results of Scenario 2 (Table S4) and 
Scenario 3 (Table S5) are consistent with our benchmark results: the 
level of PM2.5, PM10, NO2, SO2 and CO concentrations decreased sub-
stantially during lockdown. These results suggest that our estimates are 
robust regardless of pollution indices and time periods. 

3.4. Parallel trend test 

To verify the dependent variables of cities in different groups have 
parallel trends before treatment, which is one of the basic assumptions 
of DID, we conduct a parallel trend test. After de-trending and centering 
the estimates on the day of Level I response announcement (T), Fig. 5 
plots the estimate coefficients and the 95% confidence intervals, which 
are adjusted for city-level clustering. 

As shown in Fig. 5, the coefficients on the lockdown dummy vari-
ables are insignificantly different from zero for days before Level I 
response announcement, with no trends in air quality prior to Level I 
response announcement. In addition, air quality falls immediately after 
lockdown, such that D T+1 and D T+2 is significantly below 0. To sum 
up, after controlling other impacting factors, air quality improvements 
do not precede lockdown, and air quality improves immediately after 
lockdown. 

3.5. Avoided premature mortality during COVID-19 

In this study, we attempt to estimate the premature mortality due to 
PM2.5 exposure based on a concentration-response function. The results 
are shown in Fig. 6. During the lockdown period, the total premature 
mortality attributed to PM2.5 exposure is estimated to be 263.3 thousand 
(95% CI: 190.5–305.1 thousand) for 278 cities. Stroke and IHD 
contribute to 97.0 thousand (95% CI: 69.4–111.6 thousand) and 80.2 
thousand (95% CI: 57.4–92.3 thousand) premature death, together ac-
counting for 67.3% of total PM2.5-related premature death. COPD, LC, 
and ALRI contribute the rest 32.7% of premature death, each causing 
44.2 thousand (95% CI: 33.9–53.9 thousand), 33.1 thousand (95% CI: 
23.6–37.5 thousand), and 8.8 thousand (95% CI: 6.3–10.0 thousand). If 
no lockdown occurred, the average PM2.5 is expected to increase by 14.3 

Table 1 
Baseline regression results (Scenario 1: November 1, 2019 to response release).   

(1) (2) (3) (4) (5) (6) (7) 

Variable PM2.5 PM10 O31 O38 SO2 NO2 CO 
Panel 1: Model (1) estimation 
T − 14.2681*** 

（2.0897） 
− 22.1600*** 
（2.3323） 

15.5061*** 
（1.0368） 

17.0342*** 
（1.3326） 

− 2.9403*** 
（0. 3738） 

− 17.6801*** 
（0.8314） 

− 0.1751*** 
（0.0175） 

Observations 34,963 34,944 34,963 34,963 34,963 34,963 34,963 
R-Squared 0.373 0. 375 0. 449 0. 331 0. 569 0. 566 0. 454 
Panel 1: Model (2) estimation 
T − 7.8047*** (2.3037) − 9.7345*** 

(2.8934) 
16.2513*** 
(1.6474) 

20.5804*** 
(2.3827) 

− 2.4588*** 
(0.5551) 

− 12.2507*** 
(0.9978) 

− 0.1615*** 
(0.0217) 

D2_T − 8.1820*** (1.5127) − 15.3775*** 
(2.3346) 

− 1.6328 (1.7900) − 4.9093* 
(2.7210) 

− 0.6408 (0.4777) − 6.0462*** 
(0.9469) 

− 0.0351* (0.0196) 

D3_T − 10.0066*** 
(1.7603) 

− 20.4832*** 
(2.3386) 

1.2906 (2.1191) − 4.0010 (3.2933) − 0.6350 (0.6678) − 11.3362*** 
(1.0463) 

0.0426 (0.0260) 

Observations 34,963 34,944 34,963 34,963 34,963 34,963 34,963 
R-Squared 0. 375 0. 380 0. 450 0. 332 0. 569 0. 575 0. 455 

Note: the unit of CO is mg/m3; the unit of other pollutants is μg/m3. Standard errors are in parentheses, clustered at city level; *p < 0.1，**p < 0.05，***p < 0.01. 
Results of the coefficients of the key variable were reported due to space limits. 

Table 2 
Regional regression results (November 1, 2019 to response release).   

(1) (2) (3) (4) (5) (6) (7) 

Variable PM2.5 PM10 O31 O38 SO2 NO2 CO 
Northern Cities 
T − 1.2245 (1.6202) − 8.2684*** (2.1399) 7.1261*** 

(0.6335) 
9.7439*** (0.8707) 1.4515*** 

(0.3629) 
− 5.6348*** 
(0.5368) 

− 0.0454** 
(0.0180) 

Observations 19,000 18,994 19,000 19,000 19,000 19,000 19,000 
R-Squared 0.380 0.298 0.600 0.518 0.506 0.530 0.452 
Southern Cities 
T − 7.7943*** 

(0.8374) 
− 10.6757*** 
(1.1644) 

8.8864*** 
(1.2019) 

11.8074*** 
(1.9123) 

− 0.6406** 
(0.2910) 

− 7.0457*** 
(0.7476) 

− 0.0126 (0.0120) 

Observations 23251 23237 23251 23251 23251 23251 23251 
R-Squared 0.351 0.339 0.370 0.256 0.489 0.574 0.474 

Note: the unit of CO is mg/m3; the unit of other pollutants is μg/m3. Standard errors are in parentheses, clustered at city level; *p < 0.1，**p < 0.05，***p < 0.01. 
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μg/m3 on average based on the DID results. The total PM2.5-related 
premature mortality is then estimated to be 314.2 thousand (95% CI: 
254.0–336.8 thousand), representing a decrease by 16.1%. The relative 
contributions from different diseases stay unchanged. Comparing the 
premature mortality of the actual and simulated scenario, the avoided 
premature death due to lockdown is estimated to be 50.8 thousand, 
representing 19.3% of the estimated premature mortality during Level I 
response. Reduction in cardiovascular disease (stroke and IHD) mainly 
contributes to the avoided premature mortality, which are 19.4 thou-
sand (38.1%) and 16.0 thousand (31.5%), respectively. 

These numbers represent a preliminary estimate of the health im-
pacts associated with COVID-19 lockdown. The use of population- 
weighted PM2.5 concentration for all cities instead of using city-level 
PM2.5 concentration results in a relatively conservative estimate. As 
mentioned in our previous study (Huang et al., 2020), uncertainties exist 
with this preliminary estimate, including but not limited to the un-
certainties of the concentration-response coefficient, the heterogeneities 
of PM2.5 concentrations within the cities is ignore, the health impacts 
associated with ozone exposure was not considered in the study, which 
could partially offset the health benefits brought by PM2.5 reductions. 

4. Conclusions 

The outbreak of COVID-19 has led to substantial reductions in 
anthropogenic emissions due to restricted production, economic and 
social activities. In this study, the application of the difference-in- 
differences method allows us to investigate the causal impact of 
COVID-19 on changes in air quality at 278 cities across China. Our DID 

results show that lockdown has caused substantial reductions in con-
centrations of all criteria pollutants except ozone. If no lockdown 
occurred, the averaged concentration of PM2.5 would increase by 14.3 
μg/m3. The total avoided premature death associated with reductions in 
PM2.5 concentration is estimated to be 50.8 thousand, representing 
19.3% of total premature death during Level I response. However, by no 
means this study should be interpreted that pandemics have a positive 
effect on health. 

Results from the DID model confirms that the air quality of cities 
with more cases of COVID-19 exhibits stronger response to lockdown. In 
addition, Level I response has a heterogeneous effect on air quality 
improvement for southern and northern cities. The parallel trend tests 
find that the air quality for cities in different groups had similar trends 
before the Level I response. The air quality improvements do not precede 
lockdown, and air quality improves immediately after lockdown. All 
these results confirm a causal relationship between lockdown and air 
quality improvements, especially for those cities with more confirmed 
cases and southern cities. The robustness check results show the main 
conclusion does not change by using different sample periods for con-
trols. A more robust DID model should incorporate the post lockdown 
period and test whether the air quality has gotten worse after Level I 
response. A more specific model that explicitly models production and 
transportation decisions is necessary to explore the mechanisms for 
COVID-19 impacts on air quality. 

Our results have important policy implications. First, the results re- 
emphasize the importance of emission reductions in mitigating the 
adverse health impacts associated with air pollution and continuous 
efforts are needed to reduce concentrations of PM2.5 and ozone 

Fig. 5. Impact of lockdown on PM2.5 and PM10.  

Fig. 6. Premature death due to PM2.5 exposure and avoided death due to PM2.5 reductions during lockdown.  
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simultaneously. Second, the pollution mitigation policy would be more 
effective if the policies are incentive compatible, i.e., people/firm would 
abide by the policies if the policies are in their interest. Third, the 
extremely high cost of lockdown, still high level of air pollution during 
lockdown and smaller effects in northern cities implies that we need 
source-specific mitigation policies. 
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