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This article summarizes previous studies using the Community Multiscale Air Quality
(CMAQ) model to investigate the sources, formation, and control policies of air 
pollution, which has contributed to a better understanding of the air quality in China.
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Over the past decade, China has suffered from severe air
pollution issues related to particulate matter (PM) and ozone
(O3) largely due to its rapid economic development and in-
crease in energy consumption, impeding its goal of sustain-
able urban development. High levels of PM induce various
cardiovascular and respiratory health diseases, leading to mil-
lions of annual premature deaths in China.1 High concentra-
tions of O3 pollution pose significant health risks to humans,
vegetation, and the ecosystem.2

The major city clusters affected by poor air quality include the
Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD),
the Pearl River Delta (PRD), the Fenwei Plain (FW), and the
Sichuan basin (SC) economic circle (see Figure 1a). To com-
bat these issues, the Chinese government implemented the
Clean Air Action Plan (CAAP) in 2017 with two goals: reduc-
ing emissions from sources such as power plants, industry,
and vehicle exhaust, and decreasing PM concentration in
major urban districts. A post assessment study found that

CAAP achieved significant reductions in
sulfur dioxide (SO2; 62%), oxides of nitro-
gen (NOx; 17%), and PM (35%).3 China
continued its efforts to reduce air pollu-
tion through the Three-Year Action Plan
for Winning the Blue Sky Defense Battle
(TYP) in 2018, aimed at reducing the
numbers of heavily polluted days (daily
Air Quality Index higher than 200) by
25% from 2015. Recently, the State
Council deliberated and approved the 
Action Plan for Continuous Improvement
of Air Quality, aimed at lowering the 
concentration of PM2.5 at urban regions
by 10% and reducing the national 
emissions of NOx and volatile organic
compounds (VOCs) by 10% during
2020-2025.

Air quality models (AQMs) have been
widely used to investigate the formation
and control of air pollution. A series of
AQMs has been utilized to aid air quality
management in China with a significant
increase in the publication after 2013 (see
Figure 1b), when haze events in China
outbroke4 and the CAAP was imple-
mented. The most commonly used mod-
els include: the Community Multiscale Air
Quality model CMAQ; https://www.
epa.gov/cmaq); the Comprehensive Air
Quality Model with Extensions (CAMx;
https://www.camx.com); the Weather 
Research and Forecasting model coupled
with Chemistry model (WRF-Chem;
https://ruc.noaa.gov/wrf/wrf-chem); 
the Goddard Earth Observing 
System-Chem model (GEOS-Chem;
http://geoschem.org); and the Nested Air
Quality Prediction Modeling System
(NAQPMS) developed by the Institute of
Atmospheric Physics of Chinese Academy
of Science (IAP-CAS).5 Among all these
models, CMAQ is the most frequently
used AQM in the last two decades (see
Figure 1b).

Figure 1. (a) Total numbers of studies published during 2005–
2023 that employed AQMs to study air quality issues in the Beijing–
Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl 
River Delta (PRD), and the Sichuan basin (SC) economic circle. 
(b) Numbers of studies that employed AQMs to study air quality
issues in China during 2005–2023 (December). The five AQMs
include CMAQ, CAMX, WRF-Chem, GEOS-Chem and NAQPMS.
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Application of the CMAQ Model in China
CMAQ is an open-source modeling system developed by
the U.S. Environmental Protection Agency (EPA) and de-
signed for studying air pollution issues at regional-to-global
scales. Hundreds of research groups in China have used
CMAQ to investigate the sources, formation mechanism, and
control strategies of air pollution in China.6-8 The applications
focused on the following areas: (1) Formation mechanism of
air pollution; (2) Source apportionment; (3) Air quality fore-
casting; and (4) Development and evaluation of pollution
control strategies (see Figure 2).

Support understanding of the formation and removal
mechanism of air pollutants. The chemical mechanism of
CMAQ, including the formations of secondary pollutants,
and dispersion, long-range transport and deposition of pollu-
tants, is continuously updated according to laboratory, field,
and modeling findings. The CMAQ model has been used to
study different topics on air pollution in China, such as the
non-linear relationship of O3 to precursor emissions (NOx
and VOCs),9,10 formation of haze pollution,11,12 the main
components of PM (sulfate, nitrate and secondary organic
aerosols, or SOA),13,14 and wet and dry depositions of gas
and particle pollutants.15

EPA developed several diagnostic modules to support the 
application in mechanism research. For instance, Li et al.16

used the Process Analysis tool17 to evaluate the influences 
of physical and chemical processes during high O3 pollution
episodes and found a heterogeneous distribution of O3

pollution that is largely related to emission sources. Wang et
al.10 used the decoupled direct method in three dimensions
(DDM-3D) module18,19 to test the sensitivity of the O3 pollu-
tion to NOx reduction and found that NOx reduction helped
to reduce the high peak concentration of O3 even for the
urban areas in VOC-limited regime. EPA developed the 

two-way coupled model WRF-CMAQ (https://www.epa.gov/
cmaq/wrf-cmaq-model) to study the interaction between air
pollution and climate, which has shown significant improve-
ments on the spatiotemporal distributions of both PM and
O3 compared to the one-way model.20

Conduct source appointment to quantify the 
contributions of emission sources to air pollution. 
The CMAQ model can quantify the contribution from individ-
ual emission sources by simulating the air pollution concentra-
tions under different emission scenarios.21 In addition, the
CMAQ model can establish source-receptor relationships for
air pollution among regions by computing and calculating the
air pollution in the transboundary air flows and support the
regional-joint prevention and control of air pollution.22,23 Brute
Force Method (BFM) is one of the commonly used methods
to conduct source appointment,24 which is achieved by 
unning the CMAQ model twice, one with full emissions and
another with all emissions except the certain emission source,
and the difference between the two cases denotes the contri-
bution. EPA developed the Integrated Source Appointment
Method (ISAM), which is a built-in module in CMAQ to facili-
tate this function without running the model multiple times.25

Wang et al.,26 used this module to quantify the contribution of
the regional transport of NOx and VOCs to local O3 forma-
tion. In addition, Xing et al.27 developed the Response Surface
Model (RSM) to describe the non-linear relationships between
O3 and precursor emissions for China based on CMAQ 
simulations under thousands of emission scenarios.

Provide air quality forecasts and severe air pollution
warnings. The CMAQ model has shown reasonable 
performance on predicting the magnitudes of major air 
pollutants at urban, regional and national scale over China.
Air quality forecasting systems for China have been devel-
oped by coupling the CMAQ model with meteorological
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Figure 2. Applications of the CMAQ model in studying air pollution in China.
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models.8,28,29 To improve forecasts of poor air quality and
early warnings for severe air pollution, new techniques have
been applied to improve the model accuracy. For instance,
machine learning techniques have been recently used to cor-
rect the model bias on predicting air pollution concentra-
tions30 and provide short-term air quality predictions.31

Develop and assess the effectiveness of pollution 
control regulatory and policies. The CMAQ model has
been widely used in the development and assessment of 
regional pollution control policies.32-35 Chen et al.36 assessed
the effectiveness of the TYP on PM pollution in the SC 
region of China and found a maximum 10% annual 
reduction in the PM concentration, which avoided 23,000
premature deaths. Elly et al.37 analyzed the formation and 
removal of O3 pollution during the COVID-19 pandemic 
in the beginning of 2020 when stay-at-home orders 
reduced emissions from traffic and industry. Using emissions
from that period, they found that further reduction of 
NOx increased O3 as a disbenefit of emission reduction.

In addition, the CMAQ model is used to provide optimal
emission control pathways for air quality during important
events such as the Beijing 2008 Olympics Games, the
Hangzhou G20 summit and the International Import
Expo.38,39 For example, Li et al.22 evaluated the effectiveness
of regional joint-control strategies on air quality of the YRD
region during the 2nd World Internet Conference and
pointed out the synergistic emission reduction among the 
adjacent regions and 48 hours-before-events implementation
as the most effective way to guarantee good air quality 
during the event.

Implications for Future Development
This article covers part of the vast applications of the CMAQ
model in China. Besides the abovementioned topics, the

CMAQ model is used to predict the air pollution under 
different future climate scenarios,40 providing regional air 
pollution concentrations to evaluate the impact of air 
pollution on human health41 and crop yield.42 Based on the
studies in atmospheric science and application in modelling,
following are the potential challenges for modelling study 
in China: 

Improving model chemistry mechanism. Laboratory-
based, field-measurement-based, and modeling studies bring
new findings to atmospheric science. New areas regarding
model development and application emerged, such as intro-
ducing detailed photochemistry (halogen, HONO, etc.) in the
model to understand its contribution to the nitrogen cycle and
consequently the formation of PM and O3 at regional scale;
applying explicit presentations for Intermediate-VOC (IVOC)
and Semi-VOC (SVOC) species to improve model estimation
on the formation of SOA. A companion paper by Pye et al.
elsewhere in this issue of EM presents information about the
development of new chemical mechanism for CMAQ, focus-
ing on the Community Regional Atmospheric Chemistry 
Multiphase Mechanism (CRACMM) developed by EPA.

Coupling air pollution-climate change. The elevated
emission of greenhouse gases (GHGs) contributes to the
global warming process. Climate change and air pollution 
issues are linked by the air pollution-meteorology-climate 
interactions.43 Modeling studies in the United States found
that mitigation of GHGs could co-benefit the air pollution
and climate change problem.44 China is taking active actions
to achieve the goal of net-zero emission and carbon neutrality,
together with the goal to control air pollutants. The 
Chinese Government and scientific community are looking
for solutions for a synergic control of both GHGs and air 
pollutants and call for studies on the emission, transport and
removal of GHGs and the mitigation strategies. em
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