师资队伍
刘晓艳

undefined

职称:教授(博士生导师)

系所:环境科学与工程系

办公室:校本部东区环化楼

E-mail:lxy999@shu.edu.cn


个人简介

刘晓艳教授,现任上海大学环境与化学工程学院教授、博士生导师;哈尔滨工业大学环境工程专业博士毕业,东北石油大学地球化学专业硕士毕业,吉林师范大学化学专业本科毕业。先后在石油地球化学和环境地球化学研究方向开展研究工作,在多年从事土壤-地下水污染环境地球化学领域研究中,针对各种有机与无机污染物在土壤-地下水系统中的分布特征、迁移转化规律、污染风险管控与修复策略、环境材料阻控技术与生态修复技术等方面开展了卓有成效的环境保护研究工作,还对石油污染物的自然衰减过程开展探索及评价研究,曾在大庆油田和蒙古国Tamsag油田开展油污环境生态修复现场示范;在石油地球化学和有机与无机污染环境防控及生态修复领域发表多篇科研论文。指导博士生和硕士生获得高廷耀环保基金会全国博士生杰出人才奖学金、蔡冠深奖学金以及国家奖学金多项。兼任全国土壤-地下水修复网专家、上海市土壤-地下水污染场地评估专家,高等院校创新创业教育专业委员会委员,上海市环境学会土壤与地下水分会委员;自然杂志、东北石油大学学报等期刊编委,J Hazard Mater、ES&T、Bioresource Technology、ACS Appl Mater Inter、Environ Pollut、Journal of Soils & Sediments、Chemosphere、Sci Total Environ、Environ Sci Pollut R、Ecol Eng、Energy Environ Res、中国科学、化学通报、土壤学报、环境科学等多个专业期刊审稿专家。工作中多次被评为优秀教师、三八红旗手、教书育人先进个人、优秀导师等。


研究方向

1.各类污染环境监测评价与修复方法研究;

2.石油类污染湿地环境生态修复机理与技术;

3.土壤-地下水中的污染物迁移转化与防控;

4.油气生成与资源评价地球化学研究及油气水岩检测。


科研项目

主持和骨干承担多项国家自然科学基金面上项目、科技部“863”计划课题、国家重点研发计划重点专项课题与国际合作科技项目和省部级科技项目及其它科技项目。


获奖情况

主持或骨干完成的科研项目成果获得国家自然科学二等奖1项、教育部科学技术进步一等奖1项、省部级科技进步三等奖3项、厅局级科技进步一等奖5项及二等奖5项;

主持或骨干完成的教学项目成果获得省级教学成果奖3项、校级教学成果奖2项,主编教材获得省部级优秀教材二等奖。

指导博士生和硕士生获得高廷耀环保基金会全国博士生杰出人才奖学金、蔡冠深奖学金以及国家奖学金多项,另外还有多人次获光华奖等其它奖项,全国研究生环境论坛二等奖3项,上海市大学生创新论坛创新奖、优秀论文奖、最佳实践项目各1项及优秀项目奖2项,有10余名硕博士研究生获得优秀毕业生。


代表成果

[1]刘晓艳,张新颖,陈学萍,等.土壤与地下水污染防控.中国石化出版社,2024

[2]刘晓艳,张新颖,程金平.土壤中石油类污染物的迁移与修复治理技术.上海交通大学出版社,2014

[3]刘晓艳,钱光人.自然环境灾害及其防御.中国石化出版社,2015

[4]Xinying Zhang, Yan Liu, Zhiqun Chen, Beibei Li, Liu XY*, et al. Synergistic Effects of Selenium and CaAl-LDHs on Cadmium Detoxification in Brassica Chinensis L.: Physiological and Transcriptomic insights. Journal of Plant Growth Regulation. 2026.1.5.

[5]张新颖,米兰心,陈欣彤,刘晓艳*,等.Cr(Ⅵ)在海陆交互区域土壤中的还原特征及主控因素. 矿物岩石地球化学通报. 2024,43(6):1208-1214.

[6]Zhang XY, Lu JX, Gu PX, Liu XY*, et al. The effect of biochar amendment on Cd accumulation in Bidens pilosa L: changing Cd subcellular distribution, cell wall polysaccharide Cd-binding capacity and composition. Plant Physiology and Biochemistry:2024,216:109177.

[7]Xiao QY, Huang X, Chen YY, Zhang XY, Liu XY*, et al. Effects of N, N-bis (carboxymethyl)-L-glutamic acid and polyaspartic acid on the phytoremediation of cadmium in contaminated soil at the presence of pyrene: Biochemical properties and transcriptome analysis. Journal of Environmental Management. 2024,366:121825.

[8]Liu XY, Chen ZZ, Kong DW, et al. Synergistic action of Acinetobacter baumannii and Talaromyces sp.: Function of enzymes in crude oil degradation. Biochem Eng J. 2024, 201: 109144.

[9]Xie HH, Zhang XY, Liu XY*, et al. The isolation of benzo[a]pyrene-degrading strain and its cometabolic bioremediation with salicylic acid of long-term PAH-polluted soil. Land Degrad. Develop. 2023, 34(18): 5969–5982.

[10] Gao MJ, He LH, Mao Y, Chen ZZ, Zhang XY, Liu XY*, et al. The mechanism of nickel in nickel-pyrene-contaminated soil remediated by Bidens pilosa L. with applying polyaspartic acid, aminotriacetic acid, and tea saponin. Water Air Soil Poll. 2023,234: 155.

[11] Liu XY, Zhang SY, Zhang XY, et al. Cr(VI) immobilization in soil using lignin hydrogel supported nZVI: Immobilization mechanisms and long-term simulation. Chemosphere. 2022, 305: 135393.

[12] Liu XY, Ji JH, Zhang XY, et al. Microbial remediation of crude oil in saline conditions by oil-degrading bacterium Priestia megaterium FDU301. Appl Biochem Biotech. 2022,4:1-19.

[13] Liu XY, He LH, Zhang XY, et al. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing. Environ Pollut. 2022,311: 119970.

[14] Gao MJ, Gao BJ, Zhang XY, Fan JY, Liu XY*,·et al. Effects of plant growth–promoting rhizobacteria (PGPR) on the phytoremediation of pyrene-nickel-contaminated soil by Juncus effusus. Water Air Soil Poll. 2022,233:458.

[15] Liu XY, Zhang SY, Zhang XY, et al. A novel lignin hydrogel supported nZVI for efficient removal of Cr(VI). Chemosphere. 2022, 301: 134781.

[16] Liu XY, Guo H, Zhang XY, et al. Modeling the transport behavior of Pb(II), Ni(II) and Cd(II) in the complex heavy metal pollution site under the influence of coexisting ions. Process Saf Environ. 2022, 162: 211-218.

[17] Jiao AX, Gao BJ, Gao MJ, Liu XY*, et al. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass in Ni-pyrene contaminated soil. Chemosphere. 2022,294: 133654.

[18] Zhang XY, Xie HH, Liu XY*, et al. A novel green substrate made by sludge digestate and its biochar: Plant growth and greenhouse emission. Sci Total Environ. 2021,797: 149194.

[19] Zhang XY, Gu PX, Liu XY*, et al. Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa L. Ecotoxicol Environ Saf. 2021, 219: 112332.

[20] Liu XY, Chen XT, Zhang XY, et al. Quantifying the influence of soil factors on the migration of chromium (VI). Process Saf Environ. 2021, 155: 32-40.

[21] Zhang XY, Kong DW, Liu XY*, et al. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere. 2021: 129666.

[22] Zhang XY, Su C, Liu XY*, et al. Periodical changes of dissolved organic matter properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions. J Clean Prod. 2020, 275: 123787.

[23] Liu XY, Shen SY, Zhang XY*, et al. Effect of enhancers on the phytoremediation of soils polluted by pyrene and Ni using Sudan grass. Environ Sci Pollut R. 2020,27(33): 41639-41646.

[24] Tao KY, Zhang XY, Chen XP, Liu XY*, et al. Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere. 2019, 222:831-838.

[25] Zhang XY, Su C, Liu XY*, et al. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere. 2019, 241:125027.

[26] Zhang XY, Zhang YM, Liu XY*, et al. Cd uptake by Phytolacca americana L. promoted by cornstalk biochar amendments in Cd-contaminated soil. Int J Phytoremediat. 2019,22(3):251-258.

[27] Zhang XY, Chen J, Liu XY*, et al. Study on removal of pyrene by Agropyron cristatum L. in pyrene-Ni co-contaminated soil. Int J Phytoremediat. 2019,22(3):313-321.

[28] Zhang XY, Chen J, Liu XY*, et al. Nickel uptake and distribution in Agropyron cristatum L. in the presence of pyrene. Ecotox Environ Safe. 2019, 174:370-376.

[29] Zheng KW, Fan JY, Hu X, Zhang XY, Liu XY*, et al. Distribution by influence factors of pyrene removal in chemical enhancers assisted microbial phytoremediation of Scirpus triqueter in co-contaminated soils. Int J Phytoremediat. 2019,21(12):1190-1196.

[30] Zhang XY, Chen J, Liu XY*, et al. The relief effects of organic acids on Scirpus triqueter L. under pyrene-lead stress. Environ Sci Pollut R. 2019, 26(16):15828-15837.

[31] Liu XY, Mao Y, Zhang XY*, et al. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens pilosa L. Chemosphere. 2019,237.

[32] Wang CH, Gu LF, Ge SM, Liu XY*, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ Tech. 2019, 40(18):2345-2353.

[33] Yuan XY, Zhang XY, Chen XP, Kong DW, Liu XY*, et al. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource Technology. 2018,264:190-197.

[34] Zhang XY, Wang CQ, Liu XY*, et al. A durable and high-flux composite coating nylon membrane for oil-water separation. J Clean Prod.2018,193:702-708.

[35] Liu XY, Hu XX, Zhang XY, Chen XP*, et al. Effect of Bacillus subtilis and NTA-APG on pyrene dissipation in phytoremediation of nickel co-contaminated wetlands by Scirpus triqueter. Ecotoxicol Environ Saf. 2018,154:69-74.

[36] Liu XY, Cao LY, Zhang XY*, et al. Influence of alkyl polyglucoside, citric acid, and nitrilotriacetic acid on phytoremediation in pyrene-Pb co-contaminated soils. Int J Phytoremediat. 2018,20(10):1055-1061.

[37] Zhang XY, Wang CQ, Chai WB, Liu XY*, et al. Fabrication of Superhydrophobic Kapok Fiber Using CeO2 and Octadecyltrimethoxysilane. Environ Eng Sci. 2018,35(7):696-702.

[38] Wang CH, Gu LF, Ge SM, Liu XY*, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Environ Tech. 2018:1-9.

[39] Wei J, Liu XY, Wang CH, et al. Contrastive soil properties, microbial structure and soil enzymes in the rhizosphere of scirpus triqueter and bulk soil in petroleum-contaminated wetland. Environ Eng Manag J. 2018, 17(7): 1701-1709.

[40] Zhang XY, Wang CH, Liu XY*, et al. PVA/SiO2-coated stainless steel mesh with superhydrophilic-underwater superoleophobic for efficient oil-water separation. Desalin Water Treat. 2018,126:157-163.

[41] Tao KY, Liu XY*, Chen XP, et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresource Technology. 2017,224: 327-332.

[42] Liu XY, KY Tao, Sun J, et al. The introduction of woody plants for a freshwater wetland restoration alters the archaeal community structure in soil. Land Degrad. Develop. 2017,28(7):1933-1942.

[43] Chen X, Liu XY*, Zhang XY, et al. Phytoremediation effect of Scirpus triqueter inoculated plant-growth- promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater. 2016,325:319-326.

[44] Wei J, Zhang XY*, Liu XY, et al. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils. Sci Total Environ. 2017,599:50-57.

[45] Yin TT, Zhang XY, Liu XY*, et al. Resource recovery of Eichhornia crassipes as oil superabsorbent. Mar Pollut Bull. 2017,118:267-274.

[46] Yin TT, Zhang XY, Liu XY*, et al. Spilled-oil sorbents prepared by recycling of Eutrophicated aquatic plants. Chem. Eng. Technol. 2017,40(1):170-176.

[47] Hu XX, Liu XY*, Zhang XY, et al. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG. Chemosphere. 2017,188:397-402.

[48] Hu XX, Zhang XY*, Liu XY*, et al. The contribution of pyrene degrading bacteria and chemical reagents to Scirpus triqueter phytoremediation of pyrene and Ni co-contaminated soil. Water Air Soil Pollut. 2017,228(8):295-304.

[49] Chen TR, Liu XY*, Zhang XY, et al. Assessment of Pb and pyrene accumulation in Scirpus triqueter assisted by combined alkyl polyglucoside and nitrilotriacetic acid application. Environ Sci Pollut R. 2017,24(23):19194-19200.

[50] Liu XY, Cao LY, Wang Q, et al. Effect of tea saponin on phytoremediation of Cd and pyrene in contaminated soils by Lolium multiflorum. Environ Sci Pollut R. 2017,24(23):18946-18952.

[51] Zhang XY, Liu XY*, Hu X, et al. Salix integra combined with Pseudomonas aeruginosa to restore diesel contaminated soils. J Environ Eng.2017,143(9): 04017037-1-7.

[52] Yin TT, Zhang XY, Liu XY*, et al. Cellulose-based aerogel from Eichhornia crassipes as oil superabsorbent. RSC Advances, 2016,6:98563-98570.

[53] Chen TR, Liu XY*, Zhang XY, et al. Enhanced Scirpus triqueter phytoremediation of pyrene and lead co-contaminated soil with alkyl polyglucoside and nitrilotriacetic acid combined application. J Soil Sediment. 2016,16(8):2090-2096.

[54] Chen X, Li HB, Liu XY*, et al. Combined remediation of pyrene-contaminated soil with a coupled system of persulfate oxidation and phytoremediation with ryegrass. Environ Sci Pollut Res. 2016, 23(20):20672-20679.

[55] Chai WB, Liu XY*, Zhang XY, et al. Preparation and characterization of polypropylene fiber-grafted polybutylmethacrylate as oil sorbent. Desalin Water Treat. 2016,57(39):18560-18571.

[56] Zhang XY, Wang CQ, Chai WB, Liu XY*, et al. Kapok fiber as a natural source for fabrication of oil absorbent. J Chem Technol Biot. 2016 ,92(7):1613-1619.

[57] Zou JC, Chai WB, Liu XY*, et al. Magnetic pomelo peel as a new absorption material for oil-polluted water. Desalin Water Treat. 2016,57(27): 12536-12545.

[58] Wang Q, Liu XY*, Zhang XY, et al. Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Environ Sci Pollut Res.2016, 23(6):5705-5711.

[59] Chen TR, Liu XY*, Zhang XY, et al. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils. Chemosphere. 2016,154:515-520.

[60] Wang CH, Gu LF, Liu XY*, et al. Removal of pyrene in simulated wetland by joint application of Kyllinga brevifolia Rottb. and immobilized microbes. Int Biodeter Biodegr. 2016,96.

[61] Wang CH, Gu LF, Liu XY*, et al. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. Int Biodeter Biodegr. 2016,111:78-84.

[62] Hou YY, Liu XY*, Zhang XY, et al. Rhizosphere phytoremediation with Cyperus rotundus for diesel-contaminated wetlands. Water Air Soil Pollut. 2016, 75:169.

[63] Hou YY, Liu XY*, Zhang XY, et al. Effect of key components of S.triqueter root exudates on fraction and bioavailability of pyrene-lead co-contaminated soils. Int J Environ Sci Technol. 2016,13:887-896.

[64] Li HB, Zhang XY, Liu XY*, et al. Effect of rhizodeposition on alterations of soil structure and microbial community in pyrene-lead co-contaminated soils. Environ Earth Sci. 2016,75:169.

[65] Li BB, Liu XY*, Zhang XY*, et al. Oil-absorbent polyurethane sponge coated with KH-570-modified graphene. J Appl Polym Sci. 2015,132(16): 41821.

[66] Li BB, Liu XY*, Zhang XY*, et al. Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge. J Chem Technol Biot. 2015,90(11):2106-2112.

[67] Zou JC, Liu XY*, Zhong CL, et al. Effect of palmitic acid on remediation of Scripus triqueter and enzymes activities of the rhizosphere soil in the simulated diesel-spiked wetland. Int Biodeter Biodegr. 2014,94:109-114.

[68] Wang Q, Liu XY*, Wang CH, et al. Solubilization effect of surfactants on morphological transformation of cadmium and pyrene in co-contaminated soils. Water Air Soil Poll. 2015,226:147-156.

[69] Wei J, Liu XY*, Zhang XY, et al. Influences of hydrosoluble and lipophilic rhizodeposits on pyrene sorption in soil. Clean-Soil Air Water. 2015,43(10): 1401-1408.

[70] Zhang XY, Wang J, Liu XY*, et al. Potential of Sagittaria trifolia for phytoremediation of diesel. Int J phytoremediat. 2015,17(12): 1220-1226.

[71] Chai WB, Liu XY*, Zou JC, et al. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohyd Polym. 2015,132: 245-251.

[72] Li BB, Liu XY*, Zhang XY, et al. Facile preparation of graphene-coated polyurethane sponge with superhydrophobic/superoleophilic properties. J Polym Res. 2015, 22:190.

[73] Li BB, Liu XY*, Zhang XY, et al. Stainless steel mesh coated with silica for oil-water separation. Eur Polym J. 2015,73: 374-379.

[74] Hou YY, Liu XY*, Zhang XY, et al. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils. Environ Sci Pollut Res. 2015, 22:17780-17788.

[75] Zou JC, Liu XY*, Chai WB, et al. Sorption of oil from simulated seawater by fatty acid modified Pomelo Peel. Desalin Water Treat. 2015,56(4):936-46.

[76] Chai WB, Liu XY*, Zhang XY, et al. Preparation and characterization of polypropylene fiber-grafted polybutylmethacrylate as oil sorbent. Desalin Water Treat. 2015(9):1-12.


教授课程

教学方面主讲环境地球化学、土壤污染与防治、环境工程创新技术、土壤污染防治技术、环境工程新技术及应用、生活中的环境安全与对策、环境化学、仪器分析、有机地球化学、污染环境生态修复、地球化学分析技术、油气地球化学、自然环境灾害与防御、petroleum geochemistry等多门本科生及研究生课程。

欢迎有志学生们加入我们的研究团队,欢迎有关专家学者和企业共商合作事宜!



版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们